Alzheimer's disease (AD) is associated with activation of microglia in the vicinity of amyloid plaques with both detrimental results due to release of neurotoxic and pro-inflammatory mediators and beneficial effects due to amyloid phagocytosis. It is increasingly recognized that compared to normal aging, AD is associated with impairment of both innate and adaptive arms of the immune system. As key innate immune cells, microglial senescence may contribute to the development or progression of neurodegenerative diseases. Peripheral macrophages and microglia can adopt different stimulus-dependent activation states, termed classical and alternative activation, with different associated functions. Little is known about the contribution of these different microglial activation states to AD pathogenesis and disease course. This proposal will test the hypothesis that microglial activation patterns and phenotypes are differentially affected in healthy and pathological aging and contribute to impaired amyloid phagocytosis In AD. We will first establish a microarray gene signature for classical and alternative activation states by exposing cultured postmortem human microglial cells to appropriate cytokine stimuli. Using flow cytometry, real-time PCR and immunohistochemical techniques, we will then compare the activation pattern and potential of microglia derived from aged patients with no AD pathology, mild AD pathology but no dementia and from demented AD patients. We expect to see no differences in classical activation potential but an age- and disease-dependent decline in alternative activation. Lastly, we will evaluate activation-state dependent functional differences between these patient groups by performing amyloid phagocytosis assays, and measuring the release of chemokines, cytokines and neurotrophic factors. Together these studies will contribute to our understanding of distinct microglial functions and activation patterns, will begin to elucidate the degree to which microglia from aged and diseased brain are amenable to cytokine stimulation in vitro and will point to potential therapeutic means of modulating microglial phenotype in vivo.

Public Health Relevance

Microglia have a central role in the pathogenesis of Alzheimer's disease and have become a promising therapeutic target. While global suppression of microglial activation may not be beneficial, selective suppression or stimulation may. This proposal will assess distinct microglial functions and activation patterns and will begin to elucidate how to selectively modulate the innate immune response in the brain as a means to prevent pathological aging and/or modify the course of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005133-27
Application #
8014496
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J2))
Project Start
Project End
Budget Start
2010-05-01
Budget End
2011-03-31
Support Year
27
Fiscal Year
2010
Total Cost
$188,651
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Snitz, Beth E; Wang, Tianxiu; Cloonan, Yona Keich et al. (2018) Risk of progression from subjective cognitive decline to mild cognitive impairment: The role of study setting. Alzheimers Dement 14:734-742
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Fowler, Nicole R; Shaaban, C Elizabeth; Torke, Alexia M et al. (2018) ""I'm Not Sure We Had A Choice"": Decision Quality and The Use of Cardiac Implantable Electronic Devices In Older Adults With Cognitive Impairment. Cardiol Cardiovasc Med 2:10-26
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Karim, Helmet T; Wang, Maxwell; Andreescu, Carmen et al. (2018) Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression. Neuroimage Clin 19:831-839
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Kamboh, M Ilyas (2018) A Brief Synopsis on the Genetics of Alzheimer's Disease. Curr Genet Med Rep 6:133-135

Showing the most recent 10 out of 667 publications