The long term objective of this research approach is the development of an assay capable of assessing changes in the potential for plasticity that may occur in neurons in demential and aging. We have chosen the gene encoding the nerve terminal-specific protein synapsin as the experimental paradigm.
The specific aim of the project is the investigation of changes in the expression of this gene encoding the nerve terminal-specific protein synapsin as the experimental paradigm.
The specific aim of the project is the investigation of changes in the expression of this gene in dementia and during normal aging of the central nervous system. The hypothesis to be tested is whether assays of synapsin gene expressing can be used as sensitive indicators of changes in the developmental status, maturation and viability of neurons. The techniques to be employed for the assessment of synapsin gene expression in human and rat brain are: 1) RNA blot analysis of steady- state levels of synapsin mRNA; 2) nuclear run-off assay of changes in synapsin gene transcription; 3) correlation of temporal and spatial changes in synapsin mRNA levels by in situ hybridization histochemistry. The loss or impairment of synaptic connections in critical areas of the brain may produce important deficits, including those of memory, cognitive and behavioral function, associated with Alzheimer's Disease. The establishment of an assay capable of monitoring changes in neuronal plasticity may yield insight into the molecular basis of these changes.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-07
Application #
3809175
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Lee, Christopher M; Jacobs, Heidi I L; Marquié, Marta et al. (2018) 18F-Flortaucipir Binding in Choroid Plexus: Related to Race and Hippocampus Signal. J Alzheimers Dis 62:1691-1702
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Emerson, Sarah C; Waikar, Sushrut S; Fuentes, Claudio et al. (2018) Biomarker validation with an imperfect reference: Issues and bounds. Stat Methods Med Res 27:2933-2945
Petyuk, Vladislav A; Chang, Rui; Ramirez-Restrepo, Manuel et al. (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 141:2721-2739
Pasi, Marco; Marini, Sandro; Morotti, Andrea et al. (2018) Cerebellar Hematoma Location: Implications for the Underlying Microangiopathy. Stroke 49:207-210
Hopp, Sarah C; Lin, Yang; Oakley, Derek et al. (2018) The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer's disease. J Neuroinflammation 15:269
Xiong, Li; van Veluw, Susanne J; Bounemia, Narimene et al. (2018) Cerebral Cortical Microinfarcts on Magnetic Resonance Imaging and Their Association With Cognition in Cerebral Amyloid Angiopathy. Stroke 49:2330-2336
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325

Showing the most recent 10 out of 966 publications