The central theme of the MADRC is to examine the earliest features of the Alzheimer disease process. In keeping with this theme, the Center aims to understand dysfunction in neural systems prior to overt clinical symptoms - using novel clinical assays, advanced neuroimaging, and neuropathological studies focused on amyloid positive, cognitively intact individuals. Animal models would be an additional important approach to these early phases of disease where there is a gap in our knowledge; unfortunately, although animal models develop amyloid plaques and/or neurofibrillary tangles and reliably reproduce the molecular pathology of AD, they do not reproduce the unique patterns of anatomical changes that occur in early AD. Thus, no current animal models of AD provide a platform to study the anatomically restricted pathological changes that are known to occur in human patients. To address this problem, therefore, we have generated a transgenic mouse line (rTauEC) that over-expresses human mutant P301L tau primarily in the medial entorhinal cortex and develops tangles in those neurons in a pattern that is reminiscent of the early Braak II stage of human AD. We will examine the natural history of this model, examining the temporal relationship of tangles, synapse loss, and neuronal loss, to get at chicken-and-egg issues not possible to disambiguate in human autopsy tissue. We will use behavioral paradigms and molecular markers of neural system activation to test hypotheses about functional deafferentation of neural systems at early time points, before onset of behavioral abnormalities. Entorhinal neurons in rTauEC mice develop aberrant tau-filled axons and altered axonal projections, ultimately losing synaptic terminals in the dentate gyrus. This model also has the attribute of developing tau inclusions in the neurons that are the target of the entorhinal projection, in the dentate gyrus, despite not expressing human tau mRNA in those neurons. This has been interpreted as supporting the idea that there is a trans-synaptic propagation of pathological tau. We have crossed the rTauEC mice with APP/PS1 overexpressors to develop a model of tangles in entorhinal cortex and plaques throughout the cortex, analogous to the human pathology of many early cases of AD changes. Surprisingly, the addition of plaques seems to robustly accelerate the tangle propagation phenotype and also exacerbate the axonal dystrophies, developing more severe neuritic lesions in the hippocampus. Tau overexpression can be regulated with doxycycline in the rTau EC mice, mimicking some forms of anti-tau therapies. This model will therefore allow us to dissect a detailed time course of neural system degeneration, test hypotheses about tau-amyloid interactions in a defined neural system, and examine the consequences of reducing tau at various points in the disease process. Together these experiments will help provide insight into the pathobiology of the earliest phases of AD as well as highlight potential opportunities for therapeutic intervention early in the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-35
Application #
9462729
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
35
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Wegmann, Susanne; Eftekharzadeh, Bahareh; Tepper, Katharina et al. (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37:
Racine, Annie M; Brickhouse, Michael; Wolk, David A et al. (2018) The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment. Alzheimers Dement (Amst) 10:301-310
Bennett, Rachel E; Robbins, Ashley B; Hu, Miwei et al. (2018) Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer's disease. Proc Natl Acad Sci U S A 115:E1289-E1298
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Lee, Catherine; Betensky, Rebecca A; Alzheimer's Disease Neuroimaging Initiative (2018) Time-to-event data with time-varying biomarkers measured only at study entry, with applications to Alzheimer's disease. Stat Med 37:914-932
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416

Showing the most recent 10 out of 966 publications