An understanding of mechanisms regulating gene expression in neurons is central to the understanding of neuronal development and function and to the analysis of disease processes as they affect neurons. Of particular interest are those genes which are unique to neurons or whose expression distinguishes neurons from other kinds of cells. The long-term objective of this research program is to elucidate through the techniques of molecular genetics those basic features of the DNA sequence and organization of neuronal genes which regulate and limit their expression to neurons. As a first step, the mechanisms controlling the expression of genes for the neurofilament will be investigated. Three genes specify proteins which comprise neurofilaments. These genes are active at high levels in neurons and are completely inactive in all other cell types in the body. The activities of these genes are discoordinately controlled during embryonic development but change coordinately when axons are damaged. The molecular mechanisms responsible for the control of these genes are expected to be complex and to involve the interaction of protein factors with specific regulatory sequences within the DNA of the genes. This project will use recombinant DNA clones and DNA sequence information already available to identify those regulatory sequences, and to search for postulated protein regulatory factors which bind to the DNA. To do this we propose to locate the major block of enhancer elements of the NF (M) and NF (H) genes and establish their 3' and 5' boundaries. We will demonstrate that these sequences are sufficient to specify neuron specific gene expression by investigating the expression in transgenic mice of hybrid genes containing these enhancer elements linked to simple reporter genes. Next we propose to identify component sequence motifs within the enhancer that are important for expression during differentiation of embryonal carcinoma cells to neuron-like cells or for neuron specific expression in transgenic mice. Ultimately, we will characterize the proteins that bind to these component motifs and obtain cDNA clones of them. Accumulations of neurofilaments or neurofilament-like proteins occur in a number of human disorders of the nervous system, including Alzheimer's and Parkinson's disease. The information obtained during this study on neurofilament gene regulation will constitute fundamental information for analyzing the molecular basis of pathological neurofilamentous changes in human.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005138-07
Application #
3809196
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Mitchell, A C; Javidfar, B; Pothula, V et al. (2018) MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry 23:123-132
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Munger, Emily L; Edler, Melissa K; Hopkins, William D et al. (2018) Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees. J Comp Neurol :
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Hadjichrysanthou, Christoforos; McRae-McKee, Kevin; Evans, Stephanie et al. (2018) Potential Factors Associated with Cognitive Improvement of Individuals Diagnosed with Mild Cognitive Impairment or Dementia in Longitudinal Studies. J Alzheimers Dis 66:587-600
Mincer, Joshua S; Baxter, Mark G; McCormick, Patrick J et al. (2018) Delineating the Trajectory of Cognitive Recovery From General Anesthesia in Older Adults: Design and Rationale of the TORIE (Trajectory of Recovery in the Elderly) Project. Anesth Analg 126:1675-1683
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Miller, M L; Ren, Y; Szutorisz, H et al. (2018) Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability. Mol Psychiatry 23:1328-1335

Showing the most recent 10 out of 555 publications