One of the major mechanisms of cell death that has been implicated in several neurodegenerative disorders, including Alzheimer's disease, is glutamate-receptor mediated excitotoxicity. Until recently it was not feasible to delineate with precision the glutamate receptor subunit profile of identified neurons and circuits in the cerebral cortex. However, with the molecular characterization of the specific subunit proteins and the development of riboprobes and subunit specific antibodies, it is now feasible to develop detailed glutamate receptor profiles of both vulnerable and resistant neurons that are subunit-and family-specific that will delineate the degree to which certain glutamate receptor subunit molecules might be implicated in the differential vulnerability that is apparent in Alzheimer's disease. Within this context this project will be directed at the four major goals. 1) Screening of monoclonal antibodies that are directed against subunits of the non-NMDA(GluR1-7) and NMDA families of glutamate receptors for their effectiveness in immunohistochemical studies of human cortex. 2) These immunohistochemical probes, as well as riboprobes, will be used to analyze the regional, laminar and cellular distribution of specific glutamate receptor subunit proteins and related mRNAs in monkey and human neocortex and hippocampus. 3) Double labelling paradigms will be employed to determine the comprehensive glutamate receptor profile a well as correlations between the presence of certain glutamate receptor subunits and other neurochemical characteristics that have been correlated with either vulnerability or resistance to degeneration in Alzheimer's disease. These studies initially will concentrate on colocalization with cytoskeletal and Ca+2-binding proteins. 4) Alzheimer's disease related changes in the dendritic, cellular, laminar, or regional distribution of such subunit proteins and/or related mRNA's will be determined through comparison of immunohistochemical patterns in brains from Alzheimer's disease patients, elderly controls, and young controls. Through this combined analysis of normative human material, Alzheimer's disease tissue, and genetically manipulated mice it is hoped that we will be able to develop a precise glutamate receptor profile that can be linked to the differential vulnerability apparent in Alzheimer's disease and within this context develop quantitative data on shifts in the expression of specific subunits and related glutamate receptor families that might be causally related to the neurodegeneration of specific subsets of cortical neurons that occurs in Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005138-11
Application #
3745751
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642
Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N et al. (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693-697
Huckins, L M; Hatzikotoulas, K; Southam, L et al. (2018) Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Mol Psychiatry 23:1169-1180
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Ki?emet-Piska?, Spomenka; Babi? Leko, Mirjana; Blažekovi?, Antonela et al. (2018) Evaluation of cerebrospinal fluid phosphorylated tau231 as a biomarker in the differential diagnosis of Alzheimer's disease and vascular dementia. CNS Neurosci Ther 24:734-740
Soleimani, Laili; Ravona-Springer, Ramit; Heymann, Anthony et al. (2018) Depression is more strongly associated with cognition in elderly women than men with type 2 diabetes. Int Psychogeriatr :1-5
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Audrain, Mickael; Haure-Mirande, Jean-Vianney; Wang, Minghui et al. (2018) Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Mol Psychiatry :
Boban, Mirta; Babi? Leko, Mirjana; Miški?, Terezija et al. (2018) Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J Neurosci Methods :
Zhu, Carolyn W; Grossman, Hillel; Neugroschl, Judith et al. (2018) A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer's disease: A pilot study. Alzheimers Dement (N Y) 4:609-616

Showing the most recent 10 out of 555 publications