The presenilins are proteins of little known function which are involved in the etiology of Alzheimer's disease (AD). These proteins appear to be involved in development (particularly neural progenitor cell survival and neurogenesis), survival forms of apoptosis, and Abeta formation. There is evidence indicating that at least some of the effects of presenilins are mediated by the interaction of the COOH-terminus of these proteins with a cytoplasmic protein. For this reason, we have used the two-hybrid system to identify proteins interacting with the COOH- terminus of the presenilins and have found a novel protein which we call """"""""calsenilin"""""""". Our results indicate that the presenilins associate with calsenilin in situ and that calsenilin regulates the level of presenilin fragments. These data implicate calsenilin in the biology of the presenilins. Calsenilin is a novel member of the recovering family. Members of this family are calcium binding proteins which appear to play a role in modulating signaling transduction cascades in response to calcium signals. Our broad, long-term goal is to understand the normal function of the presenilins and to understand the molecular of their role in AD. As step towards this goal, we have identified a protein (calsenilin) which interacts with the domain of the presinilins which has been postulated as interacting with other proteins in order to exert biological effects. The next step would be to characterize the function of calsenilin, to study its role in presenilin-mediated effects, and to examine calsenilin in AD. From these studies, the role of calsenilin in presenilin biology and AD will be clarified. In the current proposal, we will take advantage of the unique resources of the ARDC to accomplish these goals.
The specific aims are as follows: 1. To localize calsenilin in the rat and primate nervous system. 2. To determine the relationship between the distribution of calsenilin, presenilin, neurofibrillary pathology, Abeta deposition, glutamatergic receptor subtypes and dying neurons in AD brain. 3. To characterize neural development of nice in which the calsenilin gene has been disrupted. 4. To characterize presenilin levels, Abeta formation and Abeta accumulation in mice in which the calsenilin gene has been disrupted.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005138-17
Application #
6312667
Study Section
Project Start
2000-05-15
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
17
Fiscal Year
2000
Total Cost
$248,655
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Silverman, Jeremy M; Schmeidler, James (2018) Outcome age-based prediction of successful cognitive aging by total cholesterol. Alzheimers Dement 14:952-960
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Warren, Noel A; Voloudakis, Georgios; Yoon, Yonejung et al. (2018) The product of the ?-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis. Cell Mol Life Sci 75:2813-2826
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Tsartsalis, Stergios; Xekardaki, Aikaterini; Hof, Patrick R et al. (2018) Early Alzheimer-type lesions in cognitively normal subjects. Neurobiol Aging 62:34-44
Ridge, Perry G; Karch, Celeste M; Hsu, Simon et al. (2018) Correction to: Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Med 10:4
Pimenova, Anna A; Raj, Towfique; Goate, Alison M (2018) Untangling Genetic Risk for Alzheimer's Disease. Biol Psychiatry 83:300-310
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307

Showing the most recent 10 out of 555 publications