Mount Sinai ADRC (Sano): Project 2 (Buettner) | PROJECT SUMMARY Potential factors contributing to the increased risk for cognitive impairment (CI) in type 2 diabetes (T2D) include: (a) components of Alzheimer's disease (AD) pathology (plaques, tangles, synapse loss, neuronal loss); (b) atherosclerotic vasculopathy; (c) brain insulin resistance; (d) inflammation; (e) prior episodes of hypoglycemia; (f) other, as yet unknown factors. In the only report of this topic in which AD brain has been assessed directly, Talbot et al 17 presented evidence in support of the hypothesis that insulin resistance is a consistent feature of all typical, sporadic AD. Project 2 focuses on the putative pathophysiological underpinnings between insulin resistance/T2D and CI. Investigators in Project 2 will use an induced pluripotent stem cell (iPSC) strategy to derive neurons, astrocytes, mixed brain cell cultures, and white adipocytes from various clinical populations defined in Project 1. The neurons, astrocytes, and mixed cultures will be used to study the cellular phenotypes and insulin sensitivities of central nervous system (CNS) cells, while the adipocytes will be used as exemplars of peripheral insulin-sensitive cells. We will assess quantitatively the insulin sensitivities in CNS and peripheral cells derived from iPSCs from various clinical populations defined in Project 1. In order to establish the insulin sensitivity of the iPSC-derived neuron, we will study classical insulin signaling pathways in all cell types as assessed through the phosphorylation state of downstream signaling molecules. Importantly, as a physiological readout for insulin action, we will study neurons by electrophysiology and calcium imaging, while adipocytes will be characterized through the assessment of the ability of insulin to increase glucose uptake and to suppress lipolysis. To ascertain the dependence of these responses of insulin signaling through the insulin receptor, we will employ both pharmacological or molecular approaches, the latter via an antisense-mediated knockdown of the insulin receptor or the expression of a dominant-negative mutant version of the insulin-like growth factor (IGF)-1 receptor that heterodimerizes with the insulin receptor and blocks its function. These studies will establish whether insulin resistance is a feature of AD in peripheral and/or brain cells. Additional studies will provide a direct assessment for the possible participation of insulin resistance in the generation of structural pathology causing or predisposing to CI. With regard to pathology, we will measure insulin-stimulated A secretion, and insulin-modulated tau phosphorylation in brain cells derived from the clinical populations defined in Project 1. Overall, the data derived from this project will test the hypothesis that insulin resistance is a consistent feature of the sporadic AD phenotype.

Public Health Relevance

Mount Sinai ADRC: Project 2 (Buettner) | NARRATIVE Narrative Project 2 will study the link between insulin resistance/type 2 diabetes (T2D) and cognitive impairment using induced pluripotent stem cells (iPSC) from various clinical populations defined in Project 1. These cells will be used to generate brain cells and white adipocytes to test whether central nervous system (CNS) insulin resistance links T2D and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005138-31
Application #
8849216
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J1))
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-03-31
Support Year
31
Fiscal Year
2015
Total Cost
$239,680
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Kinnunen, Kirsi M; Cash, David M; Poole, Teresa et al. (2018) Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 14:43-53
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Moreno, Cesar L; Della Guardia, Lucio; Shnyder, Valeria et al. (2018) iPSC-derived familial Alzheimer's PSEN2 N141I cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling. Mol Neurodegener 13:33
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Gallagher, Damien; Kiss, Alex; Lanctot, Krista L et al. (2018) Toward Prevention of Mild Cognitive Impairment in Older Adults With Depression: An Observational Study of Potentially Modifiable Risk Factors. J Clin Psychiatry 80:
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Toker, Lilah; Mancarci, Burak Ogan; Tripathy, Shreejoy et al. (2018) Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 84:787-796
Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N et al. (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693-697
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642

Showing the most recent 10 out of 555 publications