Autopsy examination of brain tissue is necessary to determine the accuracy of a diagnosis of Alzheimer's disease (AD) in a longitudinally followed sample of individuals with probable AD. Proxy consent for autopsy is necessary for demented patients, and little is known about the variables that predict consent. To clarify this issue, the designated next-of-kin of ADRC patients (n=50) with probable/possible AD, currently residing in nursing homes, will be interviewed by telephone about their attitudes concerning autopsy. All proxies have given their verbal consent for an autopsy on the patient. Patients will be followed, and, when they die, consent for autopsy will be sought from the next-of-kin. Three months after the patient's death, the proxy will be reinterviewed by telephone about his/her reasons for granting/refusing consent for autopsy. An understanding of the variables that underlie the decisions of proxies to grant/refuse permission for autopsy will allow us to improve our methods of introducing this difficult topic to families and, ultimately, to improve our rate of autopsy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-10
Application #
3790131
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M et al. (2018) Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement 14:998-1004
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Wong, Dean F; Comley, Robert A; Kuwabara, Hiroto et al. (2018) Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59:1869-1876
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Varma, Vijay R; Oommen, Anup M; Varma, Sudhir et al. (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15:e1002482
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Soldan, Anja; Pettigrew, Corinne; Albert, Marilyn (2018) Evaluating Cognitive Reserve Through the Prism of Preclinical Alzheimer Disease. Psychiatr Clin North Am 41:65-77
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Bermudez, Camilo; Plassard, Andrew J; Davis, Taylor L et al. (2018) Learning Implicit Brain MRI Manifolds with Deep Learning. Proc SPIE Int Soc Opt Eng 10574:

Showing the most recent 10 out of 830 publications