To understand the possible role of the accumulation of mitochondrial DNA mutations in human aging and Alzheimer's disease (AD), it is important to identify the cellular populations that contain these abnormalities. We propose to test the hypothesis that the distinctive pattern of neuronal loss and morphological changes in AD reflects somatic mutations of mitochondrial DNA in cell populations vulnerable to disease and that this process is an acceleration of a ubiquitous phenomenon observed in normal aging. This Pilot will concentrate on the demonstraty by in situ hybridization (ISH) of the well-characterized 4977-base pair """"""""common deletion"""""""" of DNA that has been demonstrated in Kearns-Sayre syndrome (KSS) and also in cardiac myocytes and human brain from aged individuals. In addition, we plan to modify the current strategy of mitochondrial DNA deletion ISH techniques with the development of a deletion-specific ISH method for studying formalin-fixed, paraffin-embedded brains. This technique will be developed through the study of tissue from a patient with a unique single deletion of mitochondrial DNA and KSS in which we have demonstrated a significant accumulation of mutant mitochondrial DNA forms in several organs. The deletion-specific ISH method will then be applied to material collected from patients with AD and age-matched controls, with an emphasis on localization within cells of the neocortex, basal ganglia, hippocampus, thalamus, substantia nigra, and locus coeruleus. These findings will then be correlated with known patterns of neuronal vulnerability in aging and in AD. It is expected that these studies will provide important new information concerning the contributions of mutated mitochondrial DNA and abnormal oxidative phosphorylation in the development of age-related changes in the human brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-13
Application #
3726327
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Reagh, Zachariah M; Noche, Jessica A; Tustison, Nicholas J et al. (2018) Functional Imbalance of Anterolateral Entorhinal Cortex and Hippocampal Dentate/CA3 Underlies Age-Related Object Pattern Separation Deficits. Neuron 97:1187-1198.e4
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Samus, Quincy M; Black, Betty Smith; Bovenkamp, Diane et al. (2018) Home is where the future is: The BrightFocus Foundation consensus panel on dementia care. Alzheimers Dement 14:104-114
Shi, Liu; Baird, Alison L; Westwood, Sarah et al. (2018) A Decade of Blood Biomarkers for Alzheimer's Disease Research: An Evolving Field, Improving Study Designs, and the Challenge of Replication. J Alzheimers Dis 62:1181-1198
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Kaji, Seiji; Maki, Takakuni; Kinoshita, Hisanori et al. (2018) Pathological Endogenous ?-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. Stem Cell Reports 10:356-365
Na, Chan Hyun; Barbhuiya, Mustafa A; Kim, Min-Sik et al. (2018) Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 28:25-36

Showing the most recent 10 out of 830 publications