Amyotrophic lateral sclerosis (ALS) is the classical form of motor neuron disease (MND). Like Alzheimer's disease (AD), ALS is a chronic progressive neuronal disorder that usually occurs in late life. Studies of ALS are relevant to AD for several reasons: subsets of ALS and AD patients have familial autosomal dominant disease linked to missense mutations of genes on chromosome 21; in both disorders, disease processes selectively affect groups of nerve cells; the mechanisms of selective vulnerability and dysfunction/death of these groups of neurons are not yet well understood in either disease; in ALS and AD, affected neurons develop cytoskeletal pathology and eventually die; these neuronal pathologies have been suggested to be mediated by several mechanisms, including excitotoxicity, oxidative damage, and calcium influx; with several exceptions, small animal models are not yet available; denervation sometimes occurs in subjects with ALS, and there are no effective therapies for ALS or AD. The Character, dynamics, and evolution of the cellular pathology and the mechanisms of cell dysfunction/death are difficult to study in humans. Because interventional biological approaches are not possible in humans and because autopsy analyses are usually limited to severe end-stage disease, animal models are essential. The recent discovery that mutations in the Cu/Zn superoxide dismutase (SOD1) gene are linked to familial ALS (FALS) suggest that transgenic strategies that introduce SOD1 mutations into mice can produce a model of FALS. These mice can be used to test the roles of these mutations in disease, to establish the characteristics and evolution of the pathology associated with these mutations, to clarify the mechanisms of motor neuron vulnerability and dysfunction, and to test novel therapies. In this Project, we will analyze the effect of the mutation on SOD1 activity in in vitro systems and on neurons in transgenic mice with SOD1 mutations. We will use strategies that have proven to be of great value in investigations of the mechanisms of dysfunction/death of neurons in other models of neuronal disease. We think that the approaches outlined in this Project to study transgenic mice with FALS mutations, which parallel those described in other projects of our Alzheimer's Disease Research Center, will greatly enhance our understanding of this neurodegenerative disease and will be of great value in identifying pathogenetic mechanisms and providing models to test therapies in late-onset, age-associated genetic diseases of the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-16
Application #
6267347
Study Section
Project Start
1998-07-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ganguli, Mary; Albanese, Emiliano; Seshadri, Sudha et al. (2018) Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health. Alzheimer Dis Assoc Disord 32:1-9
Tsapkini, Kyrana; Webster, Kimberly T; Ficek, Bronte N et al. (2018) Electrical brain stimulation in different variants of primary progressive aphasia: A randomized clinical trial. Alzheimers Dement (N Y) 4:461-472
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Riello, Marianna; Faria, Andreia V; Ficek, Bronte et al. (2018) The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front Aging Neurosci 10:346
Petyuk, Vladislav A; Chang, Rui; Ramirez-Restrepo, Manuel et al. (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 141:2721-2739
Chen, Lin; Wei, Zhiliang; Chan, Kannie W Y et al. (2018) Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 188:380-390
Ayhan, Fatma; Perez, Barbara A; Shorrock, Hannah K et al. (2018) SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 37:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Martin, Lee J; Chang, Qing (2018) DNA Damage Response and Repair, DNA Methylation, and Cell Death in Human Neurons and Experimental Animal Neurons Are Different. J Neuropathol Exp Neurol 77:636-655

Showing the most recent 10 out of 830 publications