The Alzheimer's Disease Research Center (ADRC) at The Johns Hopkins Medical Institutions (JHMI) is committed to investigations of aging and Alzheimer's disease (AD). Age and genes are important risk factors for AD, and our principal goal is to examine the impact of age and mutations in the amyloid precursor protein (APP) in the cognition/memory abnormalities occurring in elderly humans and in our mouse/human-APPswe (Mo/Hu- APP) transgenic (Tg) mice. Thus, with the support of Cores A and D, Cores B and C focus on behavior-brain correlations in intact, mildly impaired, and demented aged individuals, particularly by those in the cohorts of the Baltimore Longitudinal Study of Aging (BLSA). This extraordinarily well characterized with serial imaging studies; many of these individuals have entered our prospective autopsy program. Supported by Cores B and C, Project 4 takes advantage of this material to examine early brain lesions focusing on: glial cell responses and the production of inflammatory mediators. complement factors, cytokines, etc.) capable of influencing neurons and synapses. These findings will be correlated with detailed assessments of the neuropathology, quantitative estates of synaptic markers, and evidence of cell death and neuronal loss. In parallel to the studies of aging and AD in humans, Projects 1-3 take advantage of our lines of Mo/Hu-APPswe Tg mice that express mutant APP at levels approximately threefold greater than endogenous MoAPP; these animals develop Abeta deposits, we hypothesize that elevated levels of Abeta42 damage synapses before over deposits of Abeta species. In project 1, we will examine the performances of these Tg mice on tasks designed to assess cognition/memory. In Project 2, we will correlate these findings with studies of biochemical marker (e.g. levels of Abeta peptide species, synaptic proteins, neurotransmitters and their enzymes) and the character/severity of the cellular pathology (e.g., abnormalities in synapses, Abeta deposition, loss of synapses, activation of glial cells, subsets of neurons, evidence of cell death, etc.) in specific regions of brain. In Project 3, we believe that these parallel clinical-neurochemical-pathological correlative studies of humans and Tg mice will help to define the biological substrates of impairments. In the intervention studies of our Tg mice, we will assess the responsivity (to age, genotype, and toxins) to the basal forebrain cholinergic and monoaminergic systems that are vulnerable in cases of AD; attempt to provoke glial cells to enhance amyloid; and to test the effects of estrogen on Abeta deposits. Finally, Core D will serve to disseminate information concerning age-associated diseases to families, caregivers, and other health professionals.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
3P50AG005146-17S1
Application #
6153606
Study Section
Special Emphasis Panel (ZAG1 (J5))
Project Start
1984-09-28
Project End
2004-03-31
Budget Start
1999-09-25
Budget End
2000-03-31
Support Year
17
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Pathology
Type
Schools of Medicine
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ayhan, Fatma; Perez, Barbara A; Shorrock, Hannah K et al. (2018) SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 37:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Chen, Lin; Wei, Zhiliang; Chan, Kannie W Y et al. (2018) Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 188:380-390
Gomez, Gabriela; Beason-Held, Lori L; Bilgel, Murat et al. (2018) Metabolic Syndrome and Amyloid Accumulation in the Aging Brain. J Alzheimers Dis 65:629-639
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325
Martin, Lee J; Chang, Qing (2018) DNA Damage Response and Repair, DNA Methylation, and Cell Death in Human Neurons and Experimental Animal Neurons Are Different. J Neuropathol Exp Neurol 77:636-655
Kim, Jeongyong; Bandeen-Roche, Karen (2018) Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions. Lifetime Data Anal :
Bilgel, Murat; An, Yang; Helphrey, Jessica et al. (2018) Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults. Brain :
Hadjichrysanthou, Christoforos; McRae-McKee, Kevin; Evans, Stephanie et al. (2018) Potential Factors Associated with Cognitive Improvement of Individuals Diagnosed with Mild Cognitive Impairment or Dementia in Longitudinal Studies. J Alzheimers Dis 66:587-600
Yasar, Sevil; Varma, Vijay R; Harris, Gregory C et al. (2018) Associations of Angiotensin Converting Enzyme-1 and Angiotensin II Blood Levels and Cognitive Function. J Alzheimers Dis 63:655-664

Showing the most recent 10 out of 830 publications