Project 2 in the Johns Hopkins Alzheimer's Disease Research Center (ADRC) is entitled """"""""The roles of AB, tau and synaptic loss in early AD"""""""". The overarching goal of this project is to understand the mechanisms that allow some individuals to tolerate substantial Alzheimer's disease (AD) pathology, whereas others with similar brain abnormalities develop MCI or dementia. We will use a collection of brains from prospectively followed subjects from the ADRC, known as the Johns Hopkins ADRC Autopsy Cohort (JHAAC). The JHAAC includes brain tissue from a substantial number of subjects who were cognitively normal shortly before death, but were found to have substantial AD pathology on autopsy, referred to as 'asymptomatic AD'. The JHAAC also includes brain tissue from controls, subjects with MCI and patients with AD. We will examine three hypotheses in this project.
Aim 1 : We will test the hypothesis that amyloid-beta (AP) oligomers, not AB deposits, are responsible for cognitive decline. We will determine whether AP40, AP42 and AB oligomers distinguish the cognitive phenotypes of subjects with similar levels of AD pathology, as measured by the standard Braak and CERAD scales. In addition, we will examine whether the significant AB accumulation seen in the brains of the subset of cognitively normal subjects with substantial AD pathology is due to quantitative differences in the amount, bioactivity or distribution of enzymes purported to degrade or transport AB in vivo.
Aim 2 : We will test the hypothesis that the process that couples AB deposition with neuronal/synaptic abnormalities is associated with Tau phosphorylation or cleavage. We propose to quantitate the amount of Tau phosphorylation and fragmentation in JHAAC brain specimens to determine the strength of the relationship between these biochemical changes and cognitive status. We will also examine whether quantitative differences in the regional distribution of AB monomers, AB oligomers or glycogen synthetase kinase (GSK) 3a and 3B are associated with Tau phosphorylation or cleavage.
Aim 3 : On the assumption that synaptic dysfunction and degeneration underlies the cognitive impairment in AD, we will test the hypothesis that enhanced synaptic plasticity allows for normal cognition in the face of significant AD pathology.

Public Health Relevance

Understanding the biochemical mechanisms that underiie the accumulation of Alzheimer's pathology in the brains of some elderiy subjects (amyloid plaques and neurofibrillary tangles) and determining why some subjects with Alzheimer's pathology become demented and others remain cognitively normal is of crucial importance in developing strategies to combat Alzheimer's disease, a neurodegenerative disorder which affects over 6 million Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-28
Application #
8440986
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
1997-07-15
Project End
2015-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
28
Fiscal Year
2011
Total Cost
$220,518
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Chan, Carol K; Soldan, Anja; Pettigrew, Corinne et al. (2018) Depressive symptoms in relation to clinical symptom onset of mild cognitive impairment. Int Psychogeriatr :1-9
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Warren, Kristen N; Beason-Held, Lori L; Carlson, Olga et al. (2018) Elevated Markers of Inflammation Are Associated With Longitudinal Changes in Brain Function in Older Adults. J Gerontol A Biol Sci Med Sci 73:770-778
Ficek, Bronte N; Wang, Zeyi; Zhao, Yi et al. (2018) The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin 19:703-715
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Eavani, Harini; Habes, Mohamad; Satterthwaite, Theodore D et al. (2018) Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging 71:41-50
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642

Showing the most recent 10 out of 830 publications