The Neuropathology Core (Core D) of the Johns Hopkins Alzheimer's Disease Research Center (ADRC) has two overarching goals, one related to the analysis and distribution of brain tissue and other specimens from subjects in the ADRC, and the other related to the analysis of genetically engineered mouse models by investigators associated with the ADRC.
The specific aims of Core D are as follows: (1) to arrange and perform autopsies on clinically well-characterized subjects enrolled through the JHMI ADRC and assist with consensus diagnoses on subjects associated with the ADRC (comprised of the Clinic Cohort and the BLSA Cohort). (2) to accession and store optimally prepared tissues from the autopsies and to make these specimens available to investigators associated with the ADRC and at other collaborating institutions. (3) to accession and store samples of biological fluids and DNA obtained pre- and postmortem from subjects in the ADRC. (4) to facilitate APOE genotyping on participants in the ADRC. (5) to support the assessment of genetically engineered mouse models relevant to Alzheimer's disease (AD) and related disorders, (6) to collaborate with the medical and research community outside of Johns Hopkins by providing assistance with postmortem diagnoses of AD and other types of dementia, and (7) to train basic investigators and clinical neuroscientists in the morphological and diagnostic concepts relevant to AD, to other types of dementias and neurodegenerative disorders.

Public Health Relevance

The Johns Hopkins Alzheimer's Disease Research Center (ADRC) will address many of the topics important to dementia research, with a particular focus on the understanding the earliest phases of Alzheimer's disease (AD). This approach is important if we are ultimately going to be able to diagnose and treat AD as early as possible. The ADRC fosters interactions among scientists who are pursuing this overarching theme.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-31
Application #
8662621
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
31
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Shi, Liu; Baird, Alison L; Westwood, Sarah et al. (2018) A Decade of Blood Biomarkers for Alzheimer's Disease Research: An Evolving Field, Improving Study Designs, and the Challenge of Replication. J Alzheimers Dis 62:1181-1198
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Kaji, Seiji; Maki, Takakuni; Kinoshita, Hisanori et al. (2018) Pathological Endogenous ?-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. Stem Cell Reports 10:356-365
Na, Chan Hyun; Barbhuiya, Mustafa A; Kim, Min-Sik et al. (2018) Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 28:25-36
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7
Albert, Marilyn; Zhu, Yuxin; Moghekar, Abhay et al. (2018) Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain :
Oh, Esther S; Blennow, Kaj; Bigelow, George E et al. (2018) Abnormal CSF amyloid-?42 and tau levels in hip fracture patients without dementia. PLoS One 13:e0204695
Johnson, Erik C B; Dammer, Eric B; Duong, Duc M et al. (2018) Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13:52

Showing the most recent 10 out of 830 publications