Accumulation of proteinaceous aggregates is one of the defining hallmarks of neurodegenerative diseases. How these proteins cause disease and how they are subsequently cleared has remained an enigma. Tau, a microtubule binding protein, is one such aggregated protein found in multiple neurodegenerative syndromes including Frontotemporal dementia (FTD), Alzheimer's disease (AD), Progressive Supranuclear Palsy (PSP), and Corticobasalganglionic Degeneration (CBD). Understanding tau mediated neurodegeneration may lead to important therapeutic strategies for these disorders. Our goal is to study how decreasing tau levels and decreasing 4R:3R tau ratios affects the behavioral and pathological abnormalities in mouse models of dementia. Previous studies demonstrate that tau knockout animals are protected from amyloid beta induced behavioral abnormalities in mice. Our goal is to test whether decreasing mouse tau in older animals will also provide protection. Some mutations in tau that cause FTD lead to changes in alternative splicing and increased levels of 4R:3R tau. An N279K FTD mouse model replicates the splicing defect and behavioral pathological changes. Our goal is to test whether reversing the splicing defect in an adult N279K can reverse the behavioral and pathologic changes. In order to decrease tau mRNA and protein levels, we will infuse antisense oligonucleotides into the cerebral spinal fluid that bathes the brain and spinal cord. These oligos activate RNAse H and degrade tau mRNA. To decrease 4R:3R tau ratios, we will use a similar antisense oligo strategy, but with antisense oligos designed to promote exclusion of exon 10 (and thus decrease 4R:3R ratio) rather than decreasing tau mRNA. We show preliminary evidence for a set of oligos that decrease tau mRNA in vitro and for another group of oligos that decrease 4R:3R ratios in vitro. After establishing the efficacy of these oligos following intraventricular infusion, we will treat J20 APP mice with oligos that decrease mouse tau mRNA and protein and treat N279K tau mice with oligos that decrease 4R:3R ratios by changing tau splicing. We anticipate that these oligos will prevent the behavioral and pathological changes seen in these models. These data would form the basis for a similar treatment strategy in patients.

Public Health Relevance

There are no treatments which substantially delay the progression of Alzheimer's disease or Frontotemporal dementia. This proposal tests whether changing a protein called tau will improve behavior and pathological changes in mouse models of Alzheimer's disease and Frontotemporal dementia. This novel therapeutic strategy, if successful would be applicable to human dementias.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005681-29
Application #
8441091
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
29
Fiscal Year
2012
Total Cost
$196,118
Indirect Cost
$66,760
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Schindler, Suzanne E; Sutphen, Courtney L; Teunissen, Charlotte et al. (2018) Upward drift in cerebrospinal fluid amyloid ? 42 assay values for more than 10 years. Alzheimers Dement 14:62-70
Su, Yi; Flores, Shaney; Hornbeck, Russ C et al. (2018) Utilizing the Centiloid scale in cross-sectional and longitudinal PiB PET studies. Neuroimage Clin 19:406-416
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328
Blue, Elizabeth E; Bis, Joshua C; Dorschner, Michael O et al. (2018) Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dement Geriatr Cogn Disord 45:1-17
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Joseph-Mathurin, Nelly; Su, Yi; Blazey, Tyler M et al. (2018) Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease. Alzheimers Dement (Amst) 10:669-677
Rao, Shuquan; Ghani, Mahdi; Guo, Zhiyun et al. (2018) An APOE-independent cis-eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk. Neurobiol Aging 66:178.e1-178.e8

Showing the most recent 10 out of 952 publications