Project 2: Microglia as Mediators of Dendritic Spine Loss and Plaque Formation in the AD Brain Project Summary/Abstract Dendritic spine loss is closely associated with cognitive decline in Alzheimer's disease (AD) and other disorders. Identifying the mechanisms and stimuli that lead to spine loss in disease is crucial to developing strategies to reverse or prevent these losses, hopefully leading to improvements in cognition. Concurrent with spine loss, chronic microglial-activation is found in the AD brain and in other disorders. As part of our investigations into inflammation in the pathogenesis of AD, we targeted the colony-stimulating factor 1 receptor (CSF1R), as this regulates the proliferation of microglia. We discovered that microglia are physiologically dependent upon CSF1R signaling and that administration of CSF1R antagonists results in the rapid and continued elimination of virtually all microglia from the CNS. We have used this approach to determine that microglia do play a highly significant role in regulating dendritic spine numbers in the adult brain elimination of microglia for 8 weeks results in a ~35% increase in spine densities in CA1 and layer V cortical neurons. Additionally, electrophysiology reveals robustly increased excitatory synaptic inputs to neurons, showing direct evidence of increased active synapses. As we have shown that microglia play a role in modulating spine and synapses in the adult brain, we now propose that this normal function goes awry in AD, leading to overpruning of synapses and resulting in reduced spine densities and subsequent cognitive decline. Our project proposes 4 linked aims that will utilize human tissue to explore the relationship between microglia and dendritic spine loss, as well as plaque formation, in AD. Firstly, we will conduct thorough correlations between microglial densities and morphologies with spine loss from post-mortem tissues in control, MCI and AD subjects. We will then test our hypothesis using tissue from high-pathology control subjects. We will utilize human fibroblasts from MCI subjects, with either a high number of AD microglial-risk SNPs or a low number, which are converted to pluripotent stem cells via iPS cell technology, and then differentiated into microglia. We will then explore how microglia derived from these MCI patients differ in their abilities to 1) prune dendritic spines and 2) phagocytose and clear A?, correlating these findings with the conversion into AD from our MCI subjects. Critical to our approach, we now have the technology to eliminate all endogenous microglia from the mouse CNS via administration of CSF1R inhibitors and then repopulate the mouse brain by infusing in human IPS- derived microglia. Using this method, we can explore the effects of these cells in an in vivo setting and thus determine the effects of these human-derived microglia on both dendritic spines and on clearance/formation of A? plaques. Through these experiments we will be able to fully study the relationship between human microglia and AD pathology/spine loss in a fashion that has not been previously possible. These results will potentially lead to the development of inhibitors that can eliminate microglia in the AD brain and hence prevent spine loss.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016573-19
Application #
9462795
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
19
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92617
Suwabe, Kazuya; Byun, Kyeongho; Hyodo, Kazuki et al. (2018) Rapid stimulation of human dentate gyrus function with acute mild exercise. Proc Natl Acad Sci U S A 115:10487-10492
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Hainsworth, A H; Lee, S; Foot, P et al. (2018) Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). Neuropathol Appl Neurobiol 44:417-426
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Cox, Chelsea G; Ryan B A, Mary M; Gillen, Daniel L et al. (2018) A Preliminary Study of Clinical Trial Enrollment Decisions Among People With Mild Cognitive Impairment and Their Study Partners. Am J Geriatr Psychiatry :
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679

Showing the most recent 10 out of 518 publications