Measuring rates of brain atrophy from serial magnetic resonance imaging (MRI) scans is gaining acceptance as a valid noninvasive biomarker of disease progression in neurodegenerative conditions. To date, the two most widely used measurement techniques are, manual segmentation of specific structures (e.g. hippocampus), or semi-automated image registration and subtraction to generate whole brain atrophy rates. Both of these techniques, while useful, have important limitations in neurodegenerative conditions that are characterized by atrophy of select regions of the brain. A prototypical neurodegenerative condition that is characterized by selective atrophy is frontal temporal dementia (FTD). A class of computational techniques that we refer to in this application as tensor based morphometry (TBM) seem ideally suited to measure atrophy rates of defined regions/lobes of the brain from serial MRI scans. We have developed a prototype version of a TBM algorithm and the associated software code, but have not yet performed the clinical comparison studies necessary for validation. Another largely ignored but important technical topic addressed in this application is rigorous evaluation of sources of and methods to correct geometric distortion in MR images. This project has two major goals. The first is to optimize our prototype TBM method and to compare it to other approaches for validation purposes. We will also evaluate methods for correcting geometric distortion in MRI. This validation and testing work is the objective of Aims 1 and 2. The second major goal is to prospectively test the hypothesis that the regional atrophy rate measurement method developed during the technical phase of the project will provide group specific signatures that are characteristic of particular clinical phenotypes, specifically normal aging, AD, and FTD. We will test the hypothesis that TBM regional atrophy rate measures show greater clinical group specificity that global atrophy rate measures. We will also include pathological verification and correlation when possible.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG016574-06
Application #
6798071
Study Section
Special Emphasis Panel (ZAG1-ZIJ-7 (J4))
Project Start
2004-05-01
Project End
2009-04-30
Budget Start
2004-05-01
Budget End
2005-04-30
Support Year
6
Fiscal Year
2004
Total Cost
$168,795
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Utianski, Rene L; Whitwell, Jennifer L; Schwarz, Christopher G et al. (2018) Tau-PET imaging with [18F]AV-1451 in primary progressive apraxia of speech. Cortex 99:358-374
Kantarci, Kejal; Tosakulwong, Nirubol; Lesnick, Timothy G et al. (2018) Brain structure and cognition 3 years after the end of an early menopausal hormone therapy trial. Neurology 90:e1404-e1412
Ogaki, Kotaro; Martens, Yuka A; Heckman, Michael G et al. (2018) Multiple system atrophy and apolipoprotein E. Mov Disord 33:647-650
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Graff-Radford, Jonathan; Raman, Mekala R; Rabinstein, Alejandro A et al. (2018) Association Between Microinfarcts and Blood Pressure Trajectories. JAMA Neurol 75:212-218
Johnson, Derek R; Hunt, Christopher H; Nathan, Mark A et al. (2018) Pittsburgh compound B (PiB) PET imaging of meningioma and other intracranial tumors. J Neurooncol 136:373-378
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Jones, David T; Knopman, David S; Graff-Radford, Jonathan et al. (2018) In vivo 18F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms. Neurology 90:e947-e954
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37

Showing the most recent 10 out of 1014 publications