We identified loss-of-function mutations in the gene encoding the secreted growth factor progranulin (PGRN) as a major cause of familial frontotemporal lobar degeneration with ubiquitin and TDP-43-positive inclusions (FTLD-U). The exact role of PGRN in neurons has yet to be established, however, the loss of functional PGRN in FTLD-U implicates its essential function in neuronal survival. The identification of TDP-43 as the pathological protein, not only in patients with FTLD-U with mutations in PGRN, but also in the majority of patients with ALS and in 20-30% of pathologically confirmed Alzheimer's disease (AD) patients further suggests a role for the TDP-43 protein in a unifying neurodegenerative disease mechanism underlying these disorders. The recent identification of mutations in TDP-43 as a direct cause of neurodegeneration in sporadic and familial patients with ALS strongly supports this notion. Our working hypothesis is that the PGRN/TDP-43 axis plays a role in multiple neurodegenerative diseases including AD. In this project we will use both genetic and proteomic methods to help understand the role of PGRN and TDP-43 in AD and other neurodegenerative disorders.
The Specific Aims of this project are: 1. To determine the role of genetic variants in PGRN and TARDBP (TDP-43) in the development and presentation of AD. We will perform genetic association studies of PGRN and TARDBP in Caucasian and African/American AD case-control populations and study the effect of common genetic variability on PGRN and TDP-43 expression levels, TDP-43 pathology and disease. 2. To identify novel PGRN and TDP-43 interacting proteins using somatic brain transgenic technology. We will use somatic brain transgenic technology to express dual affinity tagged PGRN and TDP-43 proteins in the mouse brain to identify binding partners of both PGRN and TDP-43. Proteins will be identified by proteomic technologies. Subsequent studies will validate whether PGRN/TDP-43 proteins interact in human brain tissue and are altered by disease state. The proposed studies are relevant to fully appreciate the contribution of genetic variants in PGRN and TARDBP to the development and presentation of AD. Identifying the protein networks of PGRN and TDP-43 will be critical for understanding the pathways of neurodegeneration mediated by PGRN and TDP- 43 and may lead to the identification of novel therapeutic targets.

Public Health Relevance

This proposal is designed to enhance our understanding of the protein networks of PGRN and TDP-43 and to determine whether genetic factors perturbing this network may contribute to the development and presentation of Alzheimer's disease. Unveiling the genetic and molecular pathways that regulate PGRN and TDP-43 lead to novel targets that can be exploited for therapeutic actions aimed at preventing or delaying neurodegenerative diseases

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016574-15
Application #
8460032
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
15
Fiscal Year
2013
Total Cost
$146,195
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Vassilaki, Maria; Aakre, Jeremiah A; Syrjanen, Jeremy A et al. (2018) Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J Alzheimers Dis 64:281-290
Zhao, Na; Liu, Chia-Chen; Van Ingelgom, Alexandra J et al. (2018) APOE ?2 is associated with increased tau pathology in primary tauopathy. Nat Commun 9:4388
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Zhan, Yiqiang; Clements, Mark S; Roberts, Rosebud O et al. (2018) Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging 69:111-116
Mordes, Daniel A; Prudencio, Mercedes; Goodman, Lindsey D et al. (2018) Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 6:55
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325
Lowe, Val J; Bruinsma, Tyler J; Min, Hoon-Ki et al. (2018) Elevated medial temporal lobe and pervasive brain tau-PET signal in normal participants. Alzheimers Dement (Amst) 10:210-216
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Sassi, Celeste; Nalls, Michael A; Ridge, Perry G et al. (2018) Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neurobiol Aging 66:179.e17-179.e29
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021

Showing the most recent 10 out of 1014 publications