The ?4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD), which is pathologically defined by the presence of amyloid- (A)-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles. APOE4 is also a major genetic risk factor for cerebral amyloid angiopathy (CAA), a common pathological feature of AD with amyloid deposits along the cerebrovasculature. Our long-term goal is to understand how APOE4 differs from APOE3 and APOE2 in regulating A metabolism and the formation of amyloid plaques and CAA, thereby increasing risk for AD and CAA. As apoE is expressed abundantly both in brain parenchyma by astrocytes and in the cerebrovasculature by vascular mural cells, which include smooth muscle cells and pericytes, it is critical to examine how apoE isoforms expressed in different domains of the brain regulate apoE-related biology and pathobiology. As such, we have generated inducible and cell-type specific mouse models that express human apoE3 or apoE4 with the major goal being to test the specific roles of apoE isoforms produced by astrocytes or vascular mural cells in BBB permeability, brain A clearance and the formation of amyloid plaques and CAA. We hypothesize that human apoE4 expressed both in astrocytes and vascular mural cells contributes to compromised BBB integrity, impaired brain A clearance and the formation of amyloid plaques and CAA. We propose three complementary aims to test our hypothesis.
In Aim 1, we plan to compare how apoE isoforms produced by astrocytes or vascular mural cells differ in their biochemical properties and functions in regulating receptor binding, lipid transport, BBB integrity and A cellular uptake.
In Aim 2, we plan to examine how expression of apoE3 or apoE4 in astrocytes or vascular mural cells affects BBB integrity, brain A clearance, amyloid plaque deposition, and the formation of CAA in vivo using our recently developed mouse models that allow for inducible and cell-type specific expression of human apoE3 or apoE4. Finally in Aim 3, we will analyze how apoE isoforms and their expression levels influence the severity and topographical distribution of CAA in humans using a large collection of autopsy brains available through the Mayo Clinic ADRC Neuropathology Core. Together, our studies using cellular and animal models, as well as human autopsy brain tissue, will allow us to elucidate how apoE isoforms expressed in brain parenchyma and in cerebrovasculature regulate brain A clearance and the formation of amyloid plaques and CAA. These studies also have the potential to generate novel insights into how we can design therapeutic strategies for AD and CAA by targeting apoE.

Public Health Relevance

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease affecting a growingpopulation of elderly individuals. With the recent failures of clinical trials targeting amyloid- (A ) peptide; thereis an urgent need to define alternative targets for AD therapy. The apolipoprotein E (APOE) 4 allele is a stronggenetic risk factor for both AD and a related vascular pathology termed cerebral amyloid angiopathy (CAA).The major goal of our proposal is to test in animal models and in humans how the presence of apoE isoformsin different domains of the brain affects biochemical and pathological features of AD and CAA. Our studiesshould generate critical information for establishing apoE as a novel target for AD therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG016574-16
Application #
8676253
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
16
Fiscal Year
2014
Total Cost
$200,320
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Tachibana, Masaya; Yamazaki, Yu; Liu, Chia-Chen et al. (2018) Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-? pathology in amyloid model mice. Exp Neurol 300:13-21
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Kasanuki, Koji; Ross, Owen A; DeTure, Michael A et al. (2018) Relationships between lewy and tau pathologies in 375 consecutive non-Alzheimer's olfactory bulbs. Mov Disord 33:333-334
Levendowski, Daniel J; St Louis, Erik K; Strambi, Luigi Ferini et al. (2018) Comparison of EMG power during sleep from the submental and frontalis muscles. Nat Sci Sleep 10:431-437
Whitwell, Jennifer L; Graff-Radford, Jonathan; Tosakulwong, Nirubol et al. (2018) [18 F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer's disease. Ann Neurol 83:248-257
Deelchand, Dinesh K; Kantarci, Kejal; Öz, Gülin (2018) Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting. Magn Reson Med 79:1241-1250
Stricker, Nikki H; Lundt, Emily S; Edwards, Kelly K et al. (2018) Comparison of PC and iPad administrations of the Cogstate Brief Battery in the Mayo Clinic Study of Aging: assessing cross-modality equivalence of computerized neuropsychological tests. Clin Neuropsychol :1-25
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Allen, Mariet; Wang, Xue; Burgess, Jeremy D et al. (2018) Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimers Dement 14:352-366
La Joie, Renaud; Ayakta, Nagehan; Seeley, William W et al. (2018) Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement :

Showing the most recent 10 out of 1014 publications