This Neuroathology Core (NP Core) has two components: One NPCore component is located at the University of California in San Francisco (UCSF) and the other is located at the University of Pennsylvania Medical Center (UPMC). Three main reasons for this arrangement are: (1) The overall theme of this ADRC is longitudinal comparisons of human frontotemporal lobar degenerative diseases (FTLD) and prion diseases with Alzheimer's disease, mild cognitive impairment, and normal control subjects enrolled in the ADRC. (2) UCSF has already had a long-standing FTDL collaboration with the UPML Laboratory. (3) Both Laboratories use unique morphological, immunohistochemical, and neurochemical methods to study these diseases, which makes this two component NP Core the ideal neuropathology adjunct to an ADRC that will emphasize studies of FTLDs and prion diseases. The UCSF NP Core assumes the main responsibility for obtaining autopsy brains, because the the subjects are recruited by the Clinical Core at UCSF and will likely die in the vicinity of UCSF. As such, the UCSF NP Core will perform the autopsies, obtain brain samples for research from the fresh brain, bank the research samples, prepare the remainder of the brain for standard neurohistopathological analysis, and send selected research and diagnostic brain samples from suspected FTLD cases to the UPMC NP Core component. Research samples, 2x2x1 cm, will be dissected bilaterally from the uncut brain at 15 cortical sites (Brodmann areas) known to either degenerate or be spared in FTLDs. In addition, similar samples will be obtained from the rotral (anterior) cigulate gyrus and the rostral insular cortex. These samples will be divided in half with one half immersion-fixed in paraformaldehyde for possible immunohistochemical studies and the other half frozen for neurochemical and molecular studies. These will be banked in the UCSF NPCore for use by investigators of the ADRC or other suitable outside investigators. The UCSF NP Core will use selected samples of this tissue to perform stereological estimates of synapse densities and nerve cell numbers. The rest of the brain and brainstem is formalin-fixed for neurohistopathological analysis to determine diagnosis using accepted diagnostic criteria.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG023501-05
Application #
7596938
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
5
Fiscal Year
2008
Total Cost
$248,987
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
McKeever, Paul M; Schneider, Raphael; Taghdiri, Foad et al. (2018) MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer's Disease. Mol Neurobiol 55:8826-8841
La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M et al. (2018) Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 90:e282-e290
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Iaccarino, Leonardo; Tammewar, Gautam; Ayakta, Nagehan et al. (2018) Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's Disease. Neuroimage Clin 17:452-464
Wang, Chengzhong; Najm, Ramsey; Xu, Qin et al. (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24:647-657
Bettcher, Brianne M; Johnson, Sterling C; Fitch, Ryan et al. (2018) Cerebrospinal Fluid and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer's Disease Pathology and Neuronal Damage. J Alzheimers Dis 62:385-397
Kim, Eun-Joo; Brown, Jesse A; Deng, Jersey et al. (2018) Mixed TDP-43 proteinopathy and tauopathy in frontotemporal lobar degeneration: nine case series. J Neurol 265:2960-2971

Showing the most recent 10 out of 590 publications