Frontotemporal dementia (FTD), a devastating, rapidly progressive neurodegenerative disease, accounts for 15-20% of all dementia cases and particularly common in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in the frontal lobes and other brain regions, resulting in behavioral changes, and memory and motor neuron deficits. Compared with other age-dependent neurodegenerative diseases, the molecular, cellular, and genetic bases of FTD are poorly understood, although there is increasing recognition of pathological overlap with other neurodegenerative diseases. Genetic causes are estimated to account for ~40% of FTD, and since 1998, dominant mutations in four causative genes have been identified. These include mutations of tau, valosin-containing protein (VCP), CHMP2B, and progranulin. The identification of these genes allows for the generation of sorely needed animal models of FTD. The overall goal of this proposal it to generate murine models for FTD, focusing on progranulin and VCP. Murine models will enable detailed study of the pathogenesis, testing of genetic interactions between contributing mechanisms, and testing of emerging therapies.
Aim 1 is to generate mouse models for FTD caused by progranulin deficiency. Specifically, we will generate mice lacking progranulin in the whole body and, with Cre-LoxP methodology, in neurons and microglia. Additionally, we will generate mice that harbor a disease- specific nonsense mutation (corresponding to the human mutation R493X), which will provide a model for testing therapies that target non-sense mutations.
Aim 2 is to generate transgenic mice expressing human VCP with an FTD mutation (R155H) in neurons. We will also test whether a genetic interaction exists between VCP mutations and Pgrn mutations by crossing the different models. The phenotypes of each of these potential disease models will be extensively analyzed, many aspects with the assistance of expert local collaborators.These.mouse models will enable us to complement on-going cell-based studies of disease pathogenesis with in vivo testing of emerging hypotheses. The mice will also be deposited in public repositories, making them generally available to the research community.

Public Health Relevance

(Seeinstructions): Dementias due to progressive loss of brain function are huge health problems confronting our population. Frontotemporal dementia (FTD), a rapidly progressive and devastating disease, is less well known than Alzheimer's disease but is emerging as a relatively common cause of dementia. Currently, there are no cures and there are no proven animal models. We propose to generate mouse models of FTD, both to study how the disease occurs and to provide a means to test new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG023501-06
Application #
7624808
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2009-05-15
Budget End
2010-03-31
Support Year
6
Fiscal Year
2009
Total Cost
$191,000
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Bettcher, Brianne M; Johnson, Sterling C; Fitch, Ryan et al. (2018) Cerebrospinal Fluid and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer's Disease Pathology and Neuronal Damage. J Alzheimers Dis 62:385-397
Iaccarino, Leonardo; Tammewar, Gautam; Ayakta, Nagehan et al. (2018) Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's Disease. Neuroimage Clin 17:452-464
Wang, Chengzhong; Najm, Ramsey; Xu, Qin et al. (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24:647-657
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Kim, Eun-Joo; Brown, Jesse A; Deng, Jersey et al. (2018) Mixed TDP-43 proteinopathy and tauopathy in frontotemporal lobar degeneration: nine case series. J Neurol 265:2960-2971
Eser, Rana A; Ehrenberg, Alexander J; Petersen, Cathrine et al. (2018) Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study. J Neuropathol Exp Neurol 77:149-161
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Rojas, Julio C; Bang, Jee; Lobach, Iryna V et al. (2018) CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 90:e273-e281
Theofilas, Panos; Ehrenberg, Alexander J; Nguy, Austin et al. (2018) Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 61:1-12

Showing the most recent 10 out of 590 publications