Frontotemporal dementia (FTD), a devastating, rapidly progressive neurodegenerative disease, accounts for 15-20% of all dementia cases and particularly common in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in the frontal lobes and other brain regions, resulting in behavioral changes, and memory and motor neuron deficits. Compared with other age-dependent neurodegenerative diseases, the molecular, cellular, and genetic bases of FTD are poorly understood, although there is increasing recognition of pathological overlap with other neurodegenerative diseases. Genetic causes are estimated to account for ~40% of FTD, and since 1998, dominant mutations in four causative genes have been identified. These include mutations of tau, valosin-containing protein (VCP), CHMP2B, and progranulin. The identification of these genes allows for the generation of sorely needed animal models of FTD. The overall goal of this proposal it to generate murine models for FTD, focusing on progranulin and VCP. Murine models will enable detailed study of the pathogenesis, testing of genetic interactions between contributing mechanisms, and testing of emerging therapies.
Aim 1 is to generate mouse models for FTD caused by progranulin deficiency. Specifically, we will generate mice lacking progranulin in the whole body and, with Cre-LoxP methodology, in neurons and microglia. Additionally, we will generate mice that harbor a disease- specific nonsense mutation (corresponding to the human mutation R493X), which will provide a model for testing therapies that target non-sense mutations.
Aim 2 is to generate transgenic mice expressing human VCP with an FTD mutation (R155H) in neurons. We will also test whether a genetic interaction exists between VCP mutations and Pgrn mutations by crossing the different models. The phenotypes of each of these potential disease models will be extensively analyzed, many aspects with the assistance of expert local collaborators.These.mouse models will enable us to complement on-going cell-based studies of disease pathogenesis with in vivo testing of emerging hypotheses. The mice will also be deposited in public repositories, making them generally available to the research community.

Public Health Relevance

(Seeinstructions): Dementias due to progressive loss of brain function are huge health problems confronting our population. Frontotemporal dementia (FTD), a rapidly progressive and devastating disease, is less well known than Alzheimer's disease but is emerging as a relatively common cause of dementia. Currently, there are no cures and there are no proven animal models. We propose to generate mouse models of FTD, both to study how the disease occurs and to provide a means to test new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG023501-07
Application #
8051840
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
7
Fiscal Year
2010
Total Cost
$194,876
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Nguyen, Andrew D; Nguyen, Thi A; Zhang, Jiasheng et al. (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 115:E2849-E2858
Bergeron, David; Gorno-Tempini, Maria L; Rabinovici, Gil D et al. (2018) Prevalence of amyloid-? pathology in distinct variants of primary progressive aphasia. Ann Neurol 84:729-740
Björkhem, Ingemar; Patra, Kalicharan; Boxer, Adam L et al. (2018) 24S-Hydroxycholesterol Correlates With Tau and Is Increased in Cerebrospinal Fluid in Parkinson's Disease and Corticobasal Syndrome. Front Neurol 9:756
Arnemann, Katelyn L; Stöber, Franziska; Narayan, Sharada et al. (2018) Metabolic brain networks in aging and preclinical Alzheimer's disease. Neuroimage Clin 17:987-999
McKeever, Paul M; Schneider, Raphael; Taghdiri, Foad et al. (2018) MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer's Disease. Mol Neurobiol 55:8826-8841
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558

Showing the most recent 10 out of 590 publications