Alzheimer's disease (AD) is the most common cause of cognitive impairment in older patients and is expected to increase greatly in prevalence. Neuropathologically, AD is characterized by beta-amyloid containing plaques, tau-containing neurofibrillary tangles, and neuronal loss. A well described yet underappreciated eariy feature of AD pathogenesis is the degeneration ofthe locus coeruleus (LC), which is the sole source of forebrain norepinephrine (NE). Previous studies have shown that LC lesions exacerbate AD-like neuropathology and cognitive deficits in mouse models of AD, while increasing NE is neuroprotective. However, the mechanism underiying the protective effect of LC neurons in AD is not understood. We have recently discovered that NE and other endogenous catecholamines function as direct agonists forthe TrkB neurotrophin receptor. TrkB signaling is neuroprotective, retards A(3 toxicity, and is critical for neuronal plasticity and learning and memory. The goal of this proposal is to test whether this novel NE-TrkB interaction contributes to the role ofthe LC in AD pathogenesis.
In Aim 1, we will test the ability of NE and novel synthetic catecholamine-derived TrkB agonists to decrease AB production and toxicity in primary neuronal cultures.
In Aim 2, we will test the ability of the most promising TrkB agonists identified in Aim 1 to ameliorate AD-like neuropathology and cognitive deficits in a transgenic mouse model of AD.
In Aim 3, we will test the hypothesis that LC loss in mild cognitive impairment (MCI) and AD impairs TrkB activation and correlates with amyloid pathology and cognitive impairment using human postmortem cases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG025688-06
Application #
8014473
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J2))
Project Start
Project End
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
6
Fiscal Year
2010
Total Cost
$192,729
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
He, Yingli; She, Hua; Zhang, Ting et al. (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217:315-328
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Hampstead, Benjamin M; Towler, Stephen; Stringer, Anthony Y et al. (2018) Continuous measurement of object location memory is sensitive to effects of age and mild cognitive impairment and related to medial temporal lobe volume. Alzheimers Dement (Amst) 10:76-85
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Kaur, Gurjinder; Gauthier, Sebastien A; Perez-Gonzalez, Rocio et al. (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165-173
Walker, Lary C (2018) Sabotage by the brain's supporting cells helps fuel neurodegeneration. Nature 557:499-500
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Gallagher, Damien; Kiss, Alex; Lanctot, Krista L et al. (2018) Toward Prevention of Mild Cognitive Impairment in Older Adults With Depression: An Observational Study of Potentially Modifiable Risk Factors. J Clin Psychiatry 80:
Ping, Lingyan; Duong, Duc M; Yin, Luming et al. (2018) Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data 5:180036

Showing the most recent 10 out of 444 publications