The Yale ADRC seeks to advance our understanding of Alzheimer's disease with the eventual goal of translating laboratory discoveries into novel effective clinical therapies. Five Cores (Administrative, Clinical, Data, Biomarker/Pathology and Outreach) and 3 Research Projects (Lysosomes, Post-Synaptic Densities and GABAergic Networks) will work together to achieve this goal. Our unifying theme is a focus on the cell biology of specific neurons, and its disruption in Alzheimer's disease triggered by abnormal forms of Amyloid-? peptide. Research Projects will focus on specific neuronal organelles and specific neuronal subtypes perturbed in disease and make use of human tissue analysis and human subject imaging to evaluate mechanistic hypotheses. The Biomarker/Pathology Core will develop novel, sensitive and high-throughput mass spectrometry assays by targeted multiple-reaction monitoring (MRM) to monitor disease mechanisms. A key emphasis will be the translational development of research findings into therapeutic benefit. To support the future strength of Alzheimer's research, the Yale ADRC will strive to advance the careers of Young Investigators through mentorship from a distinguished Internal Advisory Committee, and through Pilot Project awards. In addition to collecting clinical data and biospecimens of brain, CSF, DNA, serum, blood cells and iPSCs for analysis by members of the ADRC research team, the ADRC will support other Yale NIH-funded research studies on related topics and contribute materials to national NIA-sponsored research networks. The Outreach Core will connect with the community to provide greater knowledge regarding Alzheimer's disease and related dementia.

Public Health Relevance

The Yale Alzheimer Disease Research Center (ADRC) seeks to advance our understanding of Alzheimer's disease with the eventual goal of translating laboratory discoveries into novel effective clinical therapies. Five Cores (Administrative, Clinica, Data, Biomarker/Pathology and Outreach) and 3 Research Projects (Lysosomes, Post-Synaptic Densities and GABAergic Networks) will work together to achieve this goal. Our unifying theme is a focus on the cell biology of specific neurons, and its disruption in Alzheimer's disease triggered by abnormal forms of Amyloid-? peptide.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
1P50AG047270-01A1
Application #
8849036
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J1))
Program Officer
Phelps, Creighton H
Project Start
2015-06-15
Project End
2020-05-31
Budget Start
2015-06-15
Budget End
2016-05-31
Support Year
1
Fiscal Year
2015
Total Cost
$1,663,561
Indirect Cost
$664,425
Name
Yale University
Department
Neurology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06510
Castonguay, David; Dufort-Gervais, Julien; Ménard, Caroline et al. (2018) The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Curr Biol 28:1079-1089.e4
Ferguson, Shawn M (2018) Axonal transport and maturation of lysosomes. Curr Opin Neurobiol 51:45-51
Ferguson, Shawn M; Henne, W Mike (2018) Organelles in metabolism and stress responses. Mol Biol Cell 29:691
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Hadjichrysanthou, Christoforos; McRae-McKee, Kevin; Evans, Stephanie et al. (2018) Potential Factors Associated with Cognitive Improvement of Individuals Diagnosed with Mild Cognitive Impairment or Dementia in Longitudinal Studies. J Alzheimers Dis 66:587-600
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Meng, Jin; Ferguson, Shawn M (2018) GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids. J Cell Biol 217:2765-2776
Nguyen, Andrew D; Nguyen, Thi A; Zhang, Jiasheng et al. (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 115:E2849-E2858
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
Scherer, Roberta W; Drye, Lea; Mintzer, Jacobo et al. (2018) The Apathy in Dementia Methylphenidate Trial 2 (ADMET 2): study protocol for a randomized controlled trial. Trials 19:46

Showing the most recent 10 out of 134 publications