Subjects with anterior cruciate ligament (ACL) injuries have a high risk of developing post-traumatic osteoarthritis (OA) despite ACL reconstruction. With the increasing number of ACL injuries in the adolescent population, we are poised to have an epidemic of young adults with post-traumatic OA and loss of function within the next decade. There is a profound need for early detection of biochemical and biomechanical abnormalities in ACL-injured and reconstructed knees. This ability to diagnose early degeneration will enable early intervention, and will provide guidance and critical evaluation for new surgical or pharmacological therapies. Magnetic resonance (MR) T{1p} and T{2} quantification have been used to detect early cartilage degeneration. However, no studies have yet investigated ACL-injured knees longitudinally using these advanced imaging techniques. Kinematic MRI allows for the determination of 3-D knee joint kinematics, including soft tissues, under specific loading conditions. Motion analysis provides evaluation of kinematics and kinetics of the entire limb during physiologic conditions such as walking, running and jumping. In this proposal, we will integrate these three quantitative measures, from tissue composition to joint kinematics and entire limb function, to longitudinally evaluate the biomechanical and biochemical abnormalities in ACL-injured and reconstructed knees. The central hypothesis is that abnormal kinematics and kinetics of ACL-injured and reconstructed knees, as measured by kinematic MRI and motion analysis, will lead to accelerated cartilage degeneration of the knee joint, as indicated by MRI T{1p} and T{2}. Specifically we aim to 1) investigate longitudinal changes in cartilage matrix in ACL-injured and reconstructed knees as indicated by MRI T{1p} and T{2};2) To investigate longitudinal changes in kinematics and kinetics in ACL-injured and reconstructed knees using kinematic MRI and motion analysis;and 3) To investigate interrelationship between knee cartilage degeneration and lower extremity kinematics and kinetics in ACL-injured knees. Bilateral knees of patients with acute ACL-injures will be studied at baseline (within 2-4 weeks post injury and prior to ACL reconstruction), 6-month, 1-year and 3-year post ACL reconstruction. Bilateral knees of age, gender and BMI-matched healthy subjects will be studied as controls. With our extensive experience in quantitative and kinematic MRI, and the availability of motion analysis within the Human Performance and Functional Testing Core, we are equipped to investigate the interaction between biochemical and biomechanical abnormalities of ACL-injured and reconstructed knees. A better understanding of this interaction is critical to advance our mechanistic knowledge of post-traumatic OA development in acutely-injured joints. Correlations between quantitative MRI and motion analysis will facilitate an understanding of the interactions leading to degeneration, and translating these techniques into the clinic will ultimately improve patient management and outcome.

Public Health Relevance

Patients with anterior cruciate ligament (ACL) ruptures tend to develop post-traumatic osteoarthritis despite ACL reconstruction. This proposal aims at evaluating the biochemical and biomechanical abnormalities in knees after ACL injuries and reconstruction using advanced MRI techniques and motion analysis. The study has the potential to improve management to patients with acute knee injures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
1P50AR060752-01
Application #
8102418
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2011-08-01
Budget End
2012-03-31
Support Year
1
Fiscal Year
2011
Total Cost
$240,865
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kumar, Deepak; Wyatt, Cory; Lee, Sonia et al. (2018) Sagittal plane walking patterns are related to MRI changes over 18-months in people with and without mild-moderate hip osteoarthritis. J Orthop Res 36:1472-1477
Shimizu, Tomohiro; Samaan, Michael A; Tanaka, Matthew S et al. (2018) Abnormal Biomechanics at 6 Months Are Associated With Cartilage Degeneration at 3 Years After Anterior Cruciate Ligament Reconstruction. Arthroscopy :
Chanchek, Nattagan; Gersing, Alexandra S; Schwaiger, Benedikt J et al. (2018) Association of diabetes mellitus and biochemical knee cartilage composition assessed by T2 relaxation time measurements: Data from the osteoarthritis initiative. J Magn Reson Imaging 47:380-390
Grace, Trevor; Samaan, Michael A; Souza, Richard B et al. (2018) Correlation of Patient Symptoms With Labral and Articular Cartilage Damage in Femoroacetabular Impingement. Orthop J Sports Med 6:2325967118778785
Rossi-deVries, Jasmine; Pedoia, Valentina; Samaan, Michael A et al. (2018) Using multidimensional topological data analysis to identify traits of hip osteoarthritis. J Magn Reson Imaging 48:1046-1058
Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila (2018) Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 288:177-185
Wise, Barton L; Niu, Jingbo; Zhang, Yuqing et al. (2018) Bone shape mediates the relationship between sex and incident knee osteoarthritis. BMC Musculoskelet Disord 19:331
Joseph, Gabby B; McCulloch, Charles E; Nevitt, Michael C et al. (2018) Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging 47:1517-1526
Joseph, G B; Nevitt, M C; McCulloch, C E et al. (2018) Associations between molecular biomarkers and MR-based cartilage composition and knee joint morphology: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 26:1070-1077
Amano, Keiko; Huebner, Janet L; Stabler, Thomas V et al. (2018) Synovial Fluid Profile at the Time of Anterior Cruciate Ligament Reconstruction and Its Association With Cartilage Matrix Composition 3 Years After Surgery. Am J Sports Med 46:890-899

Showing the most recent 10 out of 150 publications