The goals of this research are to elucidate transcriptional networks that participate in the immune response to infection by Mycobacterium leprae (mLEP) and to devise therapeutic strategies that enhance the immune response by manipulating these networks. Many mLEP patients develop a self-limiting tuberculoid form of the disease (T-lep), in which an effective immune response is dependent on transcriptional networks in macrophages activated by Toll-like receptor ligands. Type II interferon (IFN-gamma), and IL-15. These stimuli drive the transcriptional activation of genes encoding key antimicrobial peptides and cytokines that promote a robust T helper 1 response. Vitamin D plays a major role in enhancing this response, as demonstrated by the increased susceptibility of vitamin D-deficient individuals to bacterial infection. In other patients, disseminated lepromatous (L-lep) lesions develop that appear to be caused, in part, by immune suppression by the Type I IFN, IFN-Beta. Projects 1, 2, and 4 of this application will focus on microbial stimuli that drive the mLEP response, proteins induced by IFN-gamma and IFN-Beta that either enhance or suppress the antimicrobial response, and vitamin D metabolic pathways as they pertain to antimicrobial immunity. In this Project, we hypothesize that elucidation and dissection of transcriptional networks activated by stimuli that either catalyze or suppress the immune response to mLEP infection will lead to key regulatory nodes and mechanisms that can be targeted by novel therapeutics strategies. This hypothesis is based on emerging excitement about the potential of chromatin and epigenetic regulators as therapeutic targets. We propose to: 1) use high-throughput sequencing analysis of transcriptional networks (RNAseq) to understand how multiple stimuli help shape the effective and ineffective immune responses that characterize T-lep and L-lep lesions;2) elucidate the mechanism by which vitamin D suppresses the expression of important cytokines like IL-12 while promoting the expression of key antimicrobial peptides, towards the goal of uncoupling these activities in a therapeutic setting;3) elucidate the mechanisms that distinguish the Type I and Type II IFN responses, towards the translational goal of converting the suppressive Type I response into an effective Type II response. These studies have considerable potential to translate basic knowledge of gene regulation circuitry into disease therapies and will provide knowledge of transcriptional networks that will be of great value to the goals of the entire CORT team and to other basic and translational researchers studying antimicrobial immunity.

Public Health Relevance

The immune response to microbial infection is activated by interactions between the microbe and cells of the host immune system. These interactions drive the activation of hundreds of genes that orchestrate the response. Elucidation of key regulatory networks and mechanisms that participate in the response to a well-studied human pathogen, using recently developed genomics techniques, will provide a new perspective to the study of antimicrobial immunity and suggest novel strategies for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR063020-02
Application #
8531869
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$307,767
Indirect Cost
$102,993
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K et al. (2018) Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov 8:730-749
Shieh, Albert; Ma, Christina; Chun, Rene F et al. (2018) Associations Between Change in Total and Free 25-Hydroxyvitamin D With 24,25-Dihydroxyvitamin D and Parathyroid Hormone. J Clin Endocrinol Metab 103:3368-3375
Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam et al. (2018) Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. J Immunol 200:3244-3258
Cheng, Christine S; Behar, Marcelo S; Suryawanshi, Gajendra W et al. (2017) Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Syst 4:330-343.e5
Lopez, David; Montoya, Dennis; Ambrose, Michael et al. (2017) SaVanT: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles. BMC Genomics 18:824
Scumpia, Philip O; Botten, Giovanni A; Norman, Joshua S et al. (2017) Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense. PLoS Pathog 13:e1006496
Purbey, Prabhat K; Scumpia, Philip O; Kim, Peter J et al. (2017) Defined Sensing Mechanisms and Signaling Pathways Contribute to the Global Inflammatory Gene Expression Output Elicited by Ionizing Radiation. Immunity 47:421-434.e3
Madigan, Cressida A; Cambier, C J; Kelly-Scumpia, Kindra M et al. (2017) A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell 170:973-985.e10
Shieh, Albert; Ma, Christina; Chun, Rene F et al. (2017) Effects of Cholecalciferol vs Calcifediol on Total and Free 25-Hydroxyvitamin D and Parathyroid Hormone. J Clin Endocrinol Metab 102:1133-1140
Tong, Ann-Jay; Liu, Xin; Thomas, Brandon J et al. (2016) A Stringent Systems Approach Uncovers Gene-Specific Mechanisms Regulating Inflammation. Cell 165:165-179

Showing the most recent 10 out of 57 publications