The Pharmacokinefics, Bioavailability, and Metabolism Core will provide the Botanical Research Center with validated analytical methods based on tandem mass spectrometry and isotope dilufion to idenfify and quantify the various botanical estrogens and potenfial metabolites in experimental pre-clinical models from Research Projects 2 and 3. The internal exposure data collected from plasma and specific target fissues, including mammary gland, uterus, and brain regions, will be used to determine appropriate dosing and possible differences in bioavailability for whole botanicals vs. purified acfive ingredients. These tools will provide a comprehensive evaluation of pharmacokinetics and metabolism to be included in all assessments of botanical estrogens in the various organ systems.

Public Health Relevance

Little is known about the activifies and safety of botanical dietary supplements being widely consumed by women to obtain from natural sources the benefits of estrogens without the risks. This Botanical Research Center will provide basic information on how botanical estrogens work and the activities that they exhibit, offering a new conceptual framework through which their efficacy and safety can be better understood.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
1P50AT006268-01
Application #
8007129
Study Section
Special Emphasis Panel (ZAT1-SM (19))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-08-31
Support Year
1
Fiscal Year
2010
Total Cost
$83,280
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Kundu, Payel; Korol, Donna L; Bandara, Suren et al. (2018) Licorice root components mimic estrogens in an object location task but not an object recognition task. Horm Behav 103:97-106
Dash, Michael B; Ajayi, Stephen; Folsom, Lynde et al. (2018) Spontaneous Infraslow Fluctuations Modulate Hippocampal EPSP-PS Coupling. eNeuro 5:
Korol, Donna L; Wang, Wei (2018) Using a memory systems lens to view the effects of estrogens on cognition: Implications for human health. Physiol Behav 187:67-78
Kundu, Payel; Neese, Steven L; Bandara, Suren et al. (2018) The effects of the botanical estrogen, isoliquiritigenin on delayed spatial alternation. Neurotoxicol Teratol 66:55-62
Lu, Wenwen; Katzenellenbogen, Benita S (2017) Estrogen Receptor-? Modulation of the ER?-p53 Loop Regulating Gene Expression, Proliferation, and Apoptosis in Breast Cancer. Horm Cancer 8:230-242
Menazza, Sara; Sun, Junhui; Appachi, Swathi et al. (2017) Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J Mol Cell Cardiol 107:41-51
Chambliss, Ken L; Barrera, Jose; Umetani, Michihisa et al. (2016) Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology 157:3731-3741
Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar et al. (2016) Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids 105:42-9
Weis, Karen E; Raetzman, Lori T (2016) Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 313:204-214
Pisani, Samantha L; Neese, Steven L; Katzenellenbogen, John A et al. (2016) Estrogen Receptor-Selective Agonists Modulate Learning in Female Rats in a Dose- and Task-Specific Manner. Endocrinology 157:292-303

Showing the most recent 10 out of 59 publications