Lung cancer is the leading cause of cancer death in athe United States, accounting for more mortality than athe combination of breast, prostate, colon and rectal cancer. Smokers unquestionably have an increased risk for lung cancer and tobacco abuse accounts for nearly 90% of all lung cancers. There is evidence, however, that a subset of 15-25% of tobacco smokers are more highly susceptible and that this susceptibility is inherited. Our research group has previously reported that a subset of individuals have significant elevations of levels of bombesin-like peptides in the lower respiratory tract and urine. During the previous period of SPORE funding, we have completed studies which suggest that elevations of bombesin-like peptides are neither a marker of exposure to tobacco, nor of early tobacco-induced disease, but rather a marker of susceptibility to tobacco-induced disease, should an individual smoke. Furthermore, we have initiated studies examining peptidases as candidate genes regulating bombesin-like peptide levels, found wide variation in expression of one peptidase, neutral endopeptidase, and determined that neutral endopeptidase acts as a growth modulator for both small cell and non-small cell lung cancer. We now propose to test three hypotheses: 1. Bombesin-like peptide levels are genetically determined. 2. Peptidase expression affects bombesin-like genetic susceptibility to lung cancer and tumor biology. They are likely to translate into new means to define susceptible, high-risk populations, novel approaches to chemoprevention, biologic markers for early detection and additional therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-08S2
Application #
6504947
Study Section
Project Start
2000-05-01
Project End
2003-04-30
Budget Start
Budget End
Support Year
8
Fiscal Year
2001
Total Cost
$61,783
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
McCoach, Caroline E; Le, Anh T; Gowan, Katherine et al. (2018) Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-small Cell Lung Cancer. Clin Cancer Res 24:3334-3347
Drilon, Alexander; Laetsch, Theodore W; Kummar, Shivaani et al. (2018) Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 378:731-739
Pilling, Amanda B; Kim, Jihye; Estrada-Bernal, Adriana et al. (2018) ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget 9:8823-8835
Kwak, Jeff W; Laskowski, Jennifer; Li, Howard Y et al. (2018) Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res 78:143-156
Sakamoto, Mandy R; Honce, Justin M; Lindquist, Deborah L et al. (2018) Lorlatinib Salvages CNS Relapse in an ALK-Positive Non-Small-Cell Lung Cancer Patient Previously Treated With Crizotinib and High-Dose Brigatinib. Clin Lung Cancer :
McCoach, Caroline E; Blakely, Collin M; Banks, Kimberly C et al. (2018) Clinical Utility of Cell-Free DNA for the Detection of ALK Fusions and Genomic Mechanisms of ALK Inhibitor Resistance in Non-Small Cell Lung Cancer. Clin Cancer Res 24:2758-2770
Geraci, Mark W (2018) TARGETING THE PROSTACYCLIN/PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA AXIS IN LUNG CANCER CHEMOPREVENTION. Trans Am Clin Climatol Assoc 129:48-55
Robichaux, Jacqulyne P; Elamin, Yasir Y; Tan, Zhi et al. (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638-646
Kimball, Abigail K; Oko, Lauren M; Bullock, Bonnie L et al. (2018) A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data. J Immunol 200:3-22
Tippimanchai, Darinee D; Nolan, Kyle; Poczobutt, Joanna et al. (2018) Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 7:e1438105

Showing the most recent 10 out of 435 publications