In order to evaluate the relevance of basic science discoveries to human lung cancer, it has been and will continue to be necessary to obtain and analyze human tissues. The purpose of the Tissue Banks Core (TBC) ia to provide to SPORE investigators a large number of well preserved and well characterized tumors, dysplastic lesions, benign tissues, cell lines and cell and tissue fractions as well as relevant clinical information for laboratory study. Fixed, frozen and cultured tissue, serum, peripheral blood cells (PBC), urine and sputum from patients with lung cancer or at risk for lung cancer are collected through tissue procurement protocols of SPORE-affiliated institutions and the Southwest Oncology Group (SWOG). Tissue and cellular specimens are characterized as to cell type and cytogenetic and immunohistochemical marker expression by pathologists and technicians of the TBC. Microdissection and in vitro culture techniques are used to isolate and purify tumor cells and preneoplastic epithelium from contaminating stromal cells. DNA and RNA are extracted from tissue homogenates and purified cell populations and aliquoted for PCR-based procedures and blotting techniques. Inventories of tissues and cells and products prepared from these are maintained at storage sites both at Grand Junction St. Mary's Cancer Research Institute and the UCHSC. Clinical data regarding potential causative, hereditary and prognostic factors are linked in a centralized database to specimens characterized and prepared by the TBC and are available for correlation with information regarding specific specimens obtained in basic science programs. Both prospectively and retrospectively collected tissue samples and clinical information are tracked by the TBC. Tissue from invasive tumors and adjacent non- neoplastic lung tissue, pretreatment plasma and PBC from patients with these tumors are collected and processed from patients treated surgically at SPORE affiliated institutions. The TBC constitutes a unique national source of uniformly typed, staged, treated and observed tumors and preneoplastic lesions. The C permits the most efficient possible use of limited amounts of tissue available from patients with lung cancer. Materials collected by the TBC are available to SPORE and other approved and funded investigators on the basis of scientific review.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-08S2
Application #
6504953
Study Section
Project Start
2000-05-01
Project End
2003-04-30
Budget Start
Budget End
Support Year
8
Fiscal Year
2001
Total Cost
$61,783
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Tippimanchai, Darinee D; Nolan, Kyle; Poczobutt, Joanna et al. (2018) Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 7:e1438105
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Ren, Shengxiang; Zhang, Shucai; Jiang, Tao et al. (2018) Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology 7:e1384108
Davies, Kurtis D; Le, Anh T; Sheren, Jamie et al. (2018) Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J Thorac Oncol 13:1474-1482
Iams, Wade T; Yu, Hui; Shyr, Yu et al. (2018) First-line Chemotherapy Responsiveness and Patterns of Metastatic Spread Identify Clinical Syndromes Present Within Advanced KRAS Mutant Non-Small-cell Lung Cancer With Different Prognostic Significance. Clin Lung Cancer 19:531-543
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:
He, Yayi; Liu, Sangtian; Mattei, Jane et al. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12:981-986

Showing the most recent 10 out of 435 publications