The overall objective of this SPORE Immunodeficient Rodent laboratory Animal Core is to facilitate preclinical research in human lung cancer through the use of orthotopic cancer cell and tissue transplants (xenografts) in animal models. This shared resource will provide purchase, production breeding of and maintenance for specific pathogen-free, barrier- sustained, conventional, and severe-combined-immunodeficient (SCID) mice and athymic nude rats and mice for use by SPORE investigators in research projects in this program. This CORE will also provide gross and histopathology services, transgenic animal services, cancer will inoculation transfers, and harvests and animal model preparations for all program investigators using animal models. This CORE will maintain production colonies of pneumocystis carinii-free athymic nude rats and SCID mice in order to provide the necessary pulmonary disease-free animals required for these lung cancer studies. Animal studies supported by this CORE are focused on the primary SPORE Program objective which is to decrease incidence and mortality from lung cancer by discovery of cellular and molecular events involved in the progression of lung cancer and the translation of these discoveries into clinical applications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-08S4
Application #
6657506
Study Section
Project Start
2000-05-01
Project End
2003-04-30
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$61,783
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Noonan, Sinead A; Patil, Tejas; Gao, Dexiang et al. (2018) Baseline and On-Treatment Characteristics of Serum Tumor Markers in Stage IV Oncogene-Addicted Adenocarcinoma of the Lung. J Thorac Oncol 13:134-138
DeHart, David N; Fang, Diana; Heslop, Kareem et al. (2018) Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol 148:155-162
Patil, Tejas; Smith, Derek E; Bunn, Paul A et al. (2018) The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non-Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J Thorac Oncol 13:1717-1726
Suda, Kenichi; Kim, Jihye; Murakami, Isao et al. (2018) Innate Genetic Evolution of Lung Cancers and Spatial Heterogeneity: Analysis of Treatment-Naïve Lesions. J Thorac Oncol 13:1496-1507
Helfrich, Barbara A; Gao, Dexiang; Bunn Jr, Paul A (2018) Eribulin inhibits the growth of small cell lung cancer cell lines alone and with radiotherapy. Lung Cancer 118:148-154
Kleczko, Emily K; Heasley, Lynn E (2018) Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Mol Cancer 17:60
McCoach, Caroline E; Le, Anh T; Gowan, Katherine et al. (2018) Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-small Cell Lung Cancer. Clin Cancer Res 24:3334-3347
Drilon, Alexander; Laetsch, Theodore W; Kummar, Shivaani et al. (2018) Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 378:731-739
Pilling, Amanda B; Kim, Jihye; Estrada-Bernal, Adriana et al. (2018) ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget 9:8823-8835
Kwak, Jeff W; Laskowski, Jennifer; Li, Howard Y et al. (2018) Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res 78:143-156

Showing the most recent 10 out of 435 publications