Since its establishment in 1992 the Colorado SPORE Tissue Bank and Biomarkers Core Laboratory (TBBC) has consistently aimed to 1. provide well characterized tissues and products derived from those tissues to SPORE investigators, 2. assess status of submitted specimens by histological, immunohistochemical and fluorescence in situ hybridization, 3. link specimens to clinical data including outcomes in rigid compliance with standards for maintenance of patient confidentiality and informed consent. The development of targeted treatments has engendered an urgent need to know the status of the targeted pathway, the most striking examples of which are tyrosine kinase receptor and arachidonic acid pathways. RNA, DMA and protein biomarker status can efficiently be analyzed using core equipment and standardized methods in a single core laboratory. The Core will accordingly perform standardized molecular tests including quantitative RT-PCR and mutational analysis on extracts of tissue specimens obtained in support of individual SPORE research projects. Data from this testing is centrally tracked and distributed to SPORE clinical and basic science investigators who may then incorporate these data into hypothesis generation and testing. The expanded role of the Core in biomarker testing has prompted a name change for the core to Tissue Bank and Biomarkers Core Laboratory. The Core provides specimens and testing results for invasive tumors and is the central biorepository for unique and actively accruing early detection and chemoprevention trials for both the Colorado SPORE and the national SPORE program, collecting data and specimens from high risk patients without carcinoma at the time of enrollment. The Core is a unique source of biological materials that are used to investigate molecular changes that accompany and may predict invasive tumor. Specific services provided by the Core include consenting and enrollment of patients into tissue collection trials, preparation of kits for efficient sample collection and storage, sample procurement including but not limited to retrieval of tissue from operating and bronchoscopy suites, barcoding, accessioning and proper storage of SPORE specimens, histological sectioning and diagnosis of SPORE tissue samples, immunohistochemistry, and fluorescence in situ hybridization (FISH). In addition, specimens are prepared for RT-PCR, mutational analysis and oligonucleotide microarray studies required in the SPORE projects. Finally, specimens and data, including images (see Bronchial Map Project) are tracked through the central SPORE computer system and are available to SPORE investigators for outcome and clinicoepidemiological correlations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058187-17
Application #
8282958
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
17
Fiscal Year
2011
Total Cost
$299,486
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Kimball, Abigail K; Oko, Lauren M; Bullock, Bonnie L et al. (2018) A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data. J Immunol 200:3-22
Tippimanchai, Darinee D; Nolan, Kyle; Poczobutt, Joanna et al. (2018) Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 7:e1438105
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Ren, Shengxiang; Zhang, Shucai; Jiang, Tao et al. (2018) Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology 7:e1384108
Davies, Kurtis D; Le, Anh T; Sheren, Jamie et al. (2018) Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J Thorac Oncol 13:1474-1482
Iams, Wade T; Yu, Hui; Shyr, Yu et al. (2018) First-line Chemotherapy Responsiveness and Patterns of Metastatic Spread Identify Clinical Syndromes Present Within Advanced KRAS Mutant Non-Small-cell Lung Cancer With Different Prognostic Significance. Clin Lung Cancer 19:531-543
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:

Showing the most recent 10 out of 435 publications