The goal of the Colorado Lung Cancer SPORE program is to conduct translational research studies that will lead to a reduction in the lung cancer mortality rates through improved early detection, prevention, and treatment. This goal is accomplished through four novel projects, a developmental research program, and a career development program all of which are supported by four interacting shared core resources. The future impact of the program will be to hasten translation of scientific discoveries from their development to approved human use of products and services benefiting patients. The projects proposed for this next cycle are Targeting FGFR Signaling in Lung Cancer (Proj. 1);Improving the Outcome of EGFR TKI Therapy Using Rational Combinations (Proj. 2);Prostacyclin and Peroxisome Proliferator-Activated Receptor-y in Lung Cancer (Proj. 3);and Predictors of Pulmonary Nodule Malignancy (Proj. 4). The proposed shared core resources are a Tissue Bank and Biomarkers Core (A);Clinical Trials Core (B);Biostatitistics/Bioinformatics/lnformatics Core (C);and Administrative Core (D). Each Core will facilitate the translation of the research conducted by the Projects. Our SPORE studies have already had a strong impact by contributing to a transformation in the way high risk subjects and lung cancer patients are approached and treated. We are proud of our role in: 1) the development and approval of EGFR TKI therapy coupled with predictive mariners for patient selection;2) the approval of crizotinib and the use of the FISH break-apart probe as a predictive biomarker;3) the use of etinostat (HDAC inhibitor) for improving outcome of EGFR TKI therapy;4) the huge potential of low dose spiral CT screening to reduce lung cancer mortality, especially if barriers can be overcome;5) changing the landscape of chemoprevention trials allowing rapid completion of moderately sized trials and the potential for a major national randomized phase III trial. We believe that our SPORE studies and collaboration have played a key role in the transformation of lung cancer diagnosis and therapy and that our proposed studies will be equally effective in bringing new products and approaches to lung cancer patients. We believe that we can continue our success in the next grant cycle with translation of discovery to early SPORE trials and handoff of more advanced discoveries to industry and cooperative groups.

Public Health Relevance

Our SPORE program is designed to provide advances in early detection, prevention, biomarkers, and therapy of lung cancer to improve the overall 5-year survival rates (currently only 16%). We will use a multi-disciplinary approach combining clinical and basic scientists to develop novel therapies, new chemoprevention strategies, improve outcomes from existing therapies, and explore more effective early detection strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058187-19A1
Application #
8664635
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Program Officer
Ujhazy, Peter
Project Start
1997-05-20
Project End
2019-04-30
Budget Start
2014-09-17
Budget End
2015-08-31
Support Year
19
Fiscal Year
2014
Total Cost
$2,162,000
Indirect Cost
$751,781
Name
University of Colorado Denver
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:
He, Yayi; Liu, Sangtian; Mattei, Jane et al. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12:981-986
Genova, Carlo; Socinski, Mark A; Hozak, Rebecca R et al. (2018) EGFR Gene Copy Number by FISH May Predict Outcome of Necitumumab in Squamous Lung Carcinomas: Analysis from the SQUIRE Study. J Thorac Oncol 13:228-236
Merrick, Daniel T; Edwards, Michael G; Franklin, Wilbur A et al. (2018) Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Res 78:4971-4983
Li, Howard Y; McSharry, Maria; Walker, Deandra et al. (2018) Targeted overexpression of prostacyclin synthase inhibits lung tumor progression by recruiting CD4+ T lymphocytes in tumors that express MHC class II. Oncoimmunology 7:e1423182
Ravichandran, Kameswaran; Holditch, Sara; Brown, Carolyn N et al. (2018) IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am J Physiol Renal Physiol 314:F356-F366
Hilberg, Frank; Tontsch-Grunt, Ulrike; Baum, Anke et al. (2018) Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J Pharmacol Exp Ther 364:494-503

Showing the most recent 10 out of 435 publications