The basis of the Molecular Epidemiology Program is the coupling of detailed epidemiologic analysis with state-of-the-art molecular biological approaches applied to studying important epidemiologic questions. To this end, a strong and well organic Molecular Analysis Facility is critical to the success of this mission. The Molecular Analysis Core Facility is responsible for the conduct of the genetic analyses proposed in the individual projects. All genetic tests for the molecular epidemiology projects will be performed in this Core Facility. The centralized nature of this facility has permitted stringent quality control (including control of PCR contamination) and economic utilization of laboratory resources. Unique aspects of this core have featured the technical versatility through cross training of laboratory personnel, the centralized database and tissue tracking procedures, a matrix leadership approach, and provisions for exploratory projects that require attention to techniques development. In addition, we have addressed the particular requirements for population based molecular studies: reproducibility, speed, and the development of screening algorithms that improve sensitivity and specificity.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058223-08
Application #
6203257
Study Section
Project Start
1999-08-05
Project End
2001-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
8
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lei, Jonathan T; Shao, Jieya; Zhang, Jin et al. (2018) Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep 24:1434-1444.e7
Troester, Melissa A; Sun, Xuezheng; Allott, Emma H et al. (2018) Racial Differences in PAM50 Subtypes in the Carolina Breast Cancer Study. J Natl Cancer Inst 110:
Williams, Michelle M; Lee, Linus; Werfel, Thomas et al. (2018) Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell Death Dis 9:21
Allott, Emma H; Geradts, Joseph; Cohen, Stephanie M et al. (2018) Frequency of breast cancer subtypes among African American women in the AMBER consortium. Breast Cancer Res 20:12
Matsunuma, Ryoichi; Chan, Doug W; Kim, Beom-Jun et al. (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978-E11987
Panda, Anshuman; de Cubas, Aguirre A; Stein, Mark et al. (2018) Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3:
Sharma, Priyanka; López-Tarruella, Sara; García-Saenz, José Angel et al. (2018) Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin plus Docetaxel. Clin Cancer Res 24:5820-5829
Siegel, Marni B; He, Xiaping; Hoadley, Katherine A et al. (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371-1383
Kumar, Sunil; Lindsay, Daniel; Chen, Q Brent et al. (2018) Tracking plasma DNA mutation dynamics in estrogen receptor positive metastatic breast cancer with dPCR-SEQ. NPJ Breast Cancer 4:39
Smith, Christof C; Beckermann, Kathryn E; Bortone, Dante S et al. (2018) Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 128:4804-4820

Showing the most recent 10 out of 598 publications