For the population science project, we assembled an interdisciplinary team, co-led by applied (epidemiologist) and basic (telomere biologist) scientists, to verify a novel tissue biomarker for prostate cancer prognosis that we discovered - telomere length variability in prostate cancer cells combined with short telomere length in cancer-associated stromal cells (telomere biomarker). In our prospective cohort study, men with this combination had 14-times the risk of prostate cancer death; men without this combination rarely died of their cancer over 15 years. Due to the fact that current prognostic factors inadequately distinguish between aggressive and nonaggressive disease, new prognostic biomarkers that inform beyond the currently used clinico-pathologic factors are needed to enhance treatment and surveillance decision-making. We will address this important unmet clinical need for improved risk stratification for prostate cancer patients. While our prior findings point to the clinical utility of the telomere biomarker, we have completed only the discovery phase. Here, we propose to; 1) Demonstrate the validity and reproducibility of an automated TELl-FISH method, our FISH-based telomere length measurement tool, using the same prospective cohort study in which we made our discovery. A valid and reproducible high-throughput method for measuring the biomarker is needed for the proposed epidemiologic study on prognosis, and in future epidemiologic studies on eariy detection and active surveillance. 2) Conduct a nested case-control study to verify the association between the telomere biomarker, assessed using automated TELl-FISH, and risk of lethal prostate cancer. 3) Determine optimal outpoints to refine the telomere biomarker for prognosis using both cohorts. 4) Evaluate whether prevalence of the refined telomere biomarker differs across age, race, and other patient characteristics. Differences in biomarker prevalence may inform the racial disparity in disease aggressiveness. We will extensively use the Pathology, Biostatistics, and Administrative Gores. We expect the telomere biomarker will be translated for clinical prognostic utility for prostate cancer in a trial in 5 years.

Public Health Relevance

We expect that the telomere biomarker may identify prostate cancer patients who require enhanced treatment and surveillance, and importantly, patients who may not need intensive additional treatment, and possibly may not require treatment at all. Improved risk stratification allowing for individualized clinical management has the potential to increase the benefit to risk, and reduce healthcare costs for prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058236-23
Application #
9546595
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
23
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Teply, Benjamin A; Wang, Hao; Luber, Brandon et al. (2018) Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 19:76-86
Zennami, Kenji; Choi, Su Mi; Liao, Ross et al. (2018) PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance. Mol Cancer Res :
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Antonarakis, Emmanuel S; Lu, Changxue; Luber, Brandon et al. (2018) Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. Eur Urol 74:218-225
Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M et al. (2018) Current or recent smoking is associated with more variable telomere length in prostate stromal cells and prostate cancer cells. Prostate 78:233-238
Krueger, Timothy E G; Thorek, Daniel L J; Denmeade, Samuel R et al. (2018) Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 7:651-663
Shrestha, Eva; White, James R; Yu, Shu-Han et al. (2018) Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol 199:161-171
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74
Das, Swadesh K; Pradhan, Anjan K; Bhoopathi, Praveen et al. (2018) The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Res 78:2852-2863
Karnes, R Jeffrey; Choeurng, Voleak; Ross, Ashley E et al. (2018) Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol 73:168-175

Showing the most recent 10 out of 750 publications