Our overall hypothesis is that there are identifiable genetic predispositions to the development of pancreatic cancer. Our overall translational goals are to develop a scientific evidence base to inform genetic counseling and risk assessment of familial pancreatic cancer patients, to identify genetic alterations that are specifically targetable therapeutically, and to identify those high risk relatives who would benefit most from future chemoprevention trials and efforts to screen for early, and therefore potentially curable, pancreatic neoplasia. The goals of this project are to characterize further the phenotype of familial pancreatic cancer, to identify pancreatic cancer susceptibility genes, and to use these discoveries to improve clinical risk assessment for patients and their families. To achieve these goals we will utilize the unique resource of the National Familial Pancreas Tumor Registry, with over 3,900 pancreatic cancer families to conduct detailed analysis of the pathology of both familial and sporadic pancreatic cancer as well as penetrance analysis for established pancreatic cancer genes and environmental risk factors that allow for gene by environment interaction. In addition, candidate genes identified through our ongoing whole genome and exome sequencing individuals from over 100 familial pancreatic cancer families will be evaluated to identify additional pancreatic cancer susceptibility genes. We anticipate that our project will not only identify new pancreatic cancer genes but also quantify the risk of pancreatic cancer associated with these genes translating these findings into the clinical setting.

Public Health Relevance

The goal of this project identify new familial pancreatic cancer genes, quantify the risk of pancreatic cancer associated with these new genes along with established genetic and non-genetic risk factors, and to use these findings to improve risk modeling for pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA062924-20
Application #
8559514
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
20
Fiscal Year
2013
Total Cost
$190,455
Indirect Cost
$72,613
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kuboki, Yuko; Fischer, Catherine G; Beleva Guthrie, Violeta et al. (2018) Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J Pathol :
Zhang, Jiajia; Quadri, Shafat; Wolfgang, Christopher L et al. (2018) New Development of Biomarkers for Gastrointestinal Cancers: From Neoplastic Cells to Tumor Microenvironment. Biomedicines 6:
Hata, Tatsuo; Suenaga, Masaya; Marchionni, Luigi et al. (2018) Genome-Wide Somatic Copy Number Alterations and Mutations in High-Grade Pancreatic Intraepithelial Neoplasia. Am J Pathol 188:1723-1733
Noë, Michaël; Rezaee, Neda; Asrani, Kaushal et al. (2018) Immunolabeling of Cleared Human Pancreata Provides Insights into Three-Dimensional Pancreatic Anatomy and Pathology. Am J Pathol 188:1530-1535
Schunke, Kathryn J; Rosati, Lauren M; Zahurak, Marianna et al. (2018) Long-term analysis of 2 prospective studies that incorporate mitomycin C into an adjuvant chemoradiation regimen for pancreatic and periampullary cancers. Adv Radiat Oncol 3:42-51
Zhang, Jiajia; Wolfgang, Christopher L; Zheng, Lei (2018) Precision Immuno-Oncology: Prospects of Individualized Immunotherapy for Pancreatic Cancer. Cancers (Basel) 10:
Dejea, Christine M; Fathi, Payam; Craig, John M et al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592-597
Staedtke, Verena; Bai, Ren-Yuan; Kim, Kibem et al. (2018) Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564:273-277
Deng, Yang; Tu, Huakang; Pierzynski, Jeanne A et al. (2018) Determinants and prognostic value of quality of life in patients with pancreatic ductal adenocarcinoma. Eur J Cancer 92:20-32
Tamura, Koji; Yu, Jun; Hata, Tatsuo et al. (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 115:4767-4772

Showing the most recent 10 out of 883 publications