The Breast SPORE Pathology Core (PC) is dedicated to serving several needs of the Breast SPORE. (1) The PC provides a central facility for the collection and retrieval of tissues from benign and malignant breast lesions and other tissues (e.g. normal skin) that are required by SPORE investigators. (2) The PC maintains records of all specimens acquired. including a complete standardized pathologic diagnosis. (3) The PC distributes tissues to SPORE investigators according to priorities established by the Steering Committee of the Breast SPORE. (4) The PC serves as a central facility for performing and interpreting histopathological and immunohistochemical studies in tissue sections and cytology specimens (e.g.. estrogen and progesterone receptors. 5100. cytokeratins. etc.) required by SPORE investigators. (5) The PC develops. implements. and interprets histopathologic. immunohistochemical and other pathological studies in tissue sections and cytology specimens. using experimental markers developed by Breast SPORE investigators. (6) The PC relieves the investigators of the cost and burden of separately procuring specimens while at the same time protecting the privacy and uninterrupted clinical care of patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA068425-03
Application #
6237605
Study Section
Project Start
1997-09-30
Project End
1998-08-31
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
3
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Navin, Nicholas E; Hicks, James (2010) Tracing the tumor lineage. Mol Oncol 4:267-83
Ueda, Yukiko; Su, Yingjun; Richmond, Ann (2007) CCAAT displacement protein regulates nuclear factor-kappa beta-mediated chemokine transcription in melanoma cells. Melanoma Res 17:91-103
Solit, David B; Scher, Howard I; Rosen, Neal (2003) Hsp90 as a therapeutic target in prostate cancer. Semin Oncol 30:709-16
Mu, David; Chen, Liyun; Zhang, Xiping et al. (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297-302
Solit, David B; Basso, Andrea D; Olshen, Adam B et al. (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63:2139-44
Hamaguchi, Masaaki; Meth, Jennifer L; von Klitzing, Christine et al. (2002) DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci U S A 99:13647-52
Munster, Pamela N; Marchion, Douglas C; Basso, Andrea D et al. (2002) Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res 62:3132-7
Subbaramaiah, Kotha; Norton, Larry; Gerald, William et al. (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649-57
Basso, Andrea D; Solit, David B; Munster, Pamela N et al. (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159-66
Solit, David B; Zheng, Fuzhong F; Drobnjak, Maria et al. (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8:986-93

Showing the most recent 10 out of 51 publications