The overarching strategic plan of this SPORE is to develop methods for identifying persons at greatest risk for developing lung cancer and then preventing this progression. A second, related component is to understand the """"""""cancer gene anatomy"""""""" required for lung cancer development and then using this information for early detection, prevention, and the selection and/or development of new rational treatments. We have chosen to invest in three central translational research themes: early detection of genetic alterations coupled with chemoprevention in former smokers; identification of persons with an increased inherited risk of developing lung cancer; and developing new methods of smoking cessation by elucidating genetic contributions to nicotine addiction. To achieve these goals our SPORE has assembled clinicians and. basic scientists including medical oncologists, thoracic surgeons, pulmonary physicians, pathologists, molecular geneticists, molecular and cell biologists, epidemiologists, behavioral and psycho-pharmacologists, biostatisticians, and experts in development of new technologies and informatics. The SPORE, brings together two major complementary strengths in lung cancer research involving UT Southwestern Medical Center (UTSW) and M.D. Anderson Cancer Center (UTMDA) in the areas of molecular pathogenesis, genetic epidemiology, early detection, chemoprevention, and smoking cessation/nicotine addiction. This SPORE consists of 5 inter-related projects and 3 supporting Cores. The projects are: I. Gene-Discovery: Identification of 3p Recessive Oncogenes; 2. Genetic Susceptibility; 3. Molecular Early Detection; 4. Chemoprevention in Former Smokers; and 5. Smoking Cessation and the Genetics of Nicotine Addiction. The Cores are: Administrative (A); Pathology and Tissue Resources (B); and Biostatistics/Informatics (C). All of the scientific projects are: translational in nature; focus on human lung cancer; arose out of conjoint planning between UTSW and UTMDA and involve scientists from both institutions as Co-investigators; interact with the other projects; include basic and clinical investigators; and utilize Core resources. Innovative Developmental and Career Development Projects include new methods for gene discovery and therapeutics development. Achievement of the aims and objectives of this proposal will result in a major decrease in the incidence, morbidity and mortality of lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA070907-05S4
Application #
6356347
Study Section
Special Emphasis Panel (ZCA1 (M1))
Program Officer
Ujhazy, Peter
Project Start
1996-09-30
Project End
2003-04-30
Budget Start
2000-09-01
Budget End
2003-04-30
Support Year
5
Fiscal Year
2000
Total Cost
$980,000
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75390
Parra, Edwin R; Villalobos, Pamela; Mino, Barbara et al. (2018) Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non-Small Cell Lung Carcinoma. Appl Immunohistochem Mol Morphol 26:83-93
Yamauchi, Mitsuo; Barker, Thomas H; Gibbons, Don L et al. (2018) The fibrotic tumor stroma. J Clin Invest 128:16-25
Ma, Junsheng; Hobbs, Brian P; Stingo, Francesco C (2018) Integrating genomic signatures for treatment selection with Bayesian predictive failure time models. Stat Methods Med Res 27:2093-2113
Yi, Faliu; Yang, Lin; Wang, Shidan et al. (2018) Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinformatics 19:64
Song, Kai; Bi, Jia-Hao; Qiu, Zhe-Wei et al. (2018) A quantitative method for assessing smoke associated molecular damage in lung cancers. Transl Lung Cancer Res 7:439-449
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
He, Min; Liu, Shanshan; Gallolu Kankanamalage, Sachith et al. (2018) The Epithelial Sodium Channel (?ENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Transl Oncol 11:292-299
Parra, Edwin R; Villalobos, Pamela; Behrens, Carmen et al. (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6:48
Guo, Hou-Fu; Tsai, Chi-Lin; Terajima, Masahiko et al. (2018) Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding. Nat Commun 9:512
Meraz, Ismail M; Majidi, Mourad; Cao, Xiaobo et al. (2018) TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 6:163-177

Showing the most recent 10 out of 1059 publications