University of Texas SPORE in Lung Cancer: A Collaboration between The University of Texas Southwestern Medical Center (UTSW) and The University of Texas M. D. Anderson Cancer Center (MDACC). The strategic plan of this SPORE is to identify and understand the molecular """"""""hallmarks of lung cancer"""""""" and then translate this information into the clinic for early detection, prevention, prognosis, and the selection and/or development of new treatments for lung cancer. We have invested in several major translational research themes: identification of key lung cancer tumor suppressor genes and their development as novel therapeutics;identification of persons with an increased inherited and/or acquired risk of developing lung cancer by genetic epidemiology and early detection of respiratory epithelial genetic and epigenetic alterations;identification of abnormalities in apoptosis and invasion during lung cancer pathogenesis;understanding signaling pathways that are likely new targets for chemoprevention and therapy of lung cancer;and developing lung cancer therapies directed against telomerase. To achieve these goals, our SPORE has assembled clinicians and basic scientists including medical oncologists, thoracic surgeons, pulmonary physicians, pathologists, molecular geneticists, molecular and cell biologists, epidemiologists, behavioral and psycho-pharmacologists, biostatisticians, and experts in development of new technologies and informatics. The SPORE brings together two major complementary strengths in lung cancer research involving UTSW and MDACC. This SPORE consists of 5 inter-related projects and 4 supporting Cores. The projects involve: 1. Molecular Signatures for Individualizing Lung Cancer;2. Risk Prediction for Platinum-based Chemotherapy and Radiotherapy Outcome in Non-Small Cell Lung Cancer Patients;3. Targeting the Tumor Microenvironment in NSCLC;4. Therapeutic Targeting of Telomerase in Lung Cancer;and 5. Translation of the 3p21.3 Gene FUS1 into Pathway- Targeted Molecular Therapy. The Cores are: (A) Administrative;(B) Pathology &Tissue Resources;(C). Biostatistics;and (D) Bioinformatics All of the scientific projects are: translational in nature;focus on human lung cancer;involve clinical and basic investigators and biostatisticians;interact with the other projects;and utilize Core resources. Innovative Developmental and Career Development Projects have benefited greatly from SPORE Core Resources and in turn are a """"""""Pipeline"""""""" that brought new investigators into and stimulated the SPORE generating new grants and resources. This SPORE also participates in the inter-SPORE effort of the Lung Cancer Biomarkers and Chemoprevention Consortium (LCBCC). Achievement of the aims and objectives of this proposal will result in a major decrease in the incidence, morbidity and mortality of lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA070907-12
Application #
7683913
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Program Officer
Ujhazy, Peter
Project Start
1996-09-30
Project End
2013-04-30
Budget Start
2009-08-22
Budget End
2010-04-30
Support Year
12
Fiscal Year
2009
Total Cost
$2,300,000
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
He, Min; Liu, Shanshan; Gallolu Kankanamalage, Sachith et al. (2018) The Epithelial Sodium Channel (?ENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Transl Oncol 11:292-299
Parra, Edwin R; Villalobos, Pamela; Behrens, Carmen et al. (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6:48
Guo, Hou-Fu; Tsai, Chi-Lin; Terajima, Masahiko et al. (2018) Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding. Nat Commun 9:512
Meraz, Ismail M; Majidi, Mourad; Cao, Xiaobo et al. (2018) TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 6:163-177
Zhang, Liren; Lin, Jing; Ye, Yuanqing et al. (2018) Serum MicroRNA-150 Predicts Prognosis for Early-Stage Non-Small Cell Lung Cancer and Promotes Tumor Cell Proliferation by Targeting Tumor Suppressor Gene SRCIN1. Clin Pharmacol Ther 103:1061-1073
Bayo, Juan; Tran, Tram Anh; Wang, Lei et al. (2018) Jumonji Inhibitors Overcome Radioresistance in Cancer through Changes in H3K4 Methylation at Double-Strand Breaks. Cell Rep 25:1040-1050.e5
Ludlow, Andrew T; Wong, Mandy Sze; Robin, Jerome D et al. (2018) NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun 9:3112
Chen, Limo; Diao, Lixia; Yang, Yongbin et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discov 8:1156-1175
Mender, Ilgen; LaRanger, Ryan; Luitel, Krishna et al. (2018) Telomerase-Mediated Strategy for Overcoming Non-Small Cell Lung Cancer Targeted Therapy and Chemotherapy Resistance. Neoplasia 20:826-837
Gong, Ke; Guo, Gao; Gerber, David E et al. (2018) TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Invest 128:2500-2518

Showing the most recent 10 out of 1059 publications