Activating mutations in the K-ras proto-oncogene occur in 30% of lung adenocarcinomas, the most common subtype of non-small cell lung cancer (NSCLC). K-ras is a membrane-associated GTPase that activates multiple kinase pathways, several of which have transforming activity in cellular models. Which of these downstream mediators of K-ras contribute to lung tumorigenesis has not been fully elucidated. Moreover, no effective approaches are available for the treatment of K-ras-mutant NSCLC. To address this problem, we investigated a mouse model (K-rasl_A1) that develops lung adenocarcinoma through somatic activation of oncogenic K-ras (G12D). We observed prominent inflammatory cells (macrophages and neutrophils), vascular endothelial cells, and bronchioalveolar stem cells (BASCs, the putative precursors of lung adenocarcinoma cells) infiltrating atypical alveolar hyperplasia (AAH) lesions and adenomas. This finding indicates that a stromal response induced by oncogenic K-ras accompanies early lung neoplasia. Our global hypothesis is that oncogenic K-ras-induced lung tumorigenesis is driven in part by a host response to the presence of transformed alveolar epithelial cells. These cells arise from BASCs and secrete chemokines that recruit inflammatory cells and endothelial cells, which, in turn, secrete chemokines and growth factors that promote BASC expansion, thereby accelerating lung tumorigenesis. We will test this hypothesis by carrying out two Specific Aims.
In Aim 1, we will use a genetic approach (loss of 3-phosphoinositide-dependent kinase [PDK-1], a PI3K-dependent kinase) to confirm our finding that pharmacologic inhibition of PI3Kdependent signaling (PX-866 or CCI-779) is sufficient to block lung tumorigenesis induced by oncogenic Kras, and we will examine whether agents that target intra-tumoral endothelial cells (neutralizing CXCR-2 antibody) and inflammatory cells (CCI-779) have cooperative anti-tumor effects.
In Aim 2, we will translate our findings in KrasLAI mice to the clinic by examining whether NSCLC patients with K-ras-mutant tumors have increased serum concentrations of CXCR2 ligands, which thereby mobilize CXCR2pos blood cells into the circulation. We have established the ability to detect by flow cytometric analysis circulating endothelial cell and CXCR2pos monocytic populations, which we will examine as biomarkers of response to treatment with a neutralizing anti-CXCR2 antibody in a Phase I clinical trial in cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA070907-14
Application #
8290536
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-06-27
Budget End
2012-04-30
Support Year
14
Fiscal Year
2011
Total Cost
$238,299
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Sinicropi-Yao, Sara L; Amann, Joseph M; Lopez, David Lopez Y et al. (2018) Co-Expression Analysis Reveals Mechanisms Underlying the Varied Roles of NOTCH1 in NSCLC. J Thorac Oncol :
Le, Xiuning; Puri, Sonam; Negrao, Marcelo V et al. (2018) Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clin Cancer Res 24:6195-6203
Wang, Shidan; Chen, Alyssa; Yang, Lin et al. (2018) Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci Rep 8:10393
Gomez, Daniel Richard; Byers, Lauren Averett; Nilsson, Monique et al. (2018) Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget 9:14268-14284
Parra, Edwin R; Villalobos, Pamela; Mino, Barbara et al. (2018) Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non-Small Cell Lung Carcinoma. Appl Immunohistochem Mol Morphol 26:83-93
Yamauchi, Mitsuo; Barker, Thomas H; Gibbons, Don L et al. (2018) The fibrotic tumor stroma. J Clin Invest 128:16-25
Ma, Junsheng; Hobbs, Brian P; Stingo, Francesco C (2018) Integrating genomic signatures for treatment selection with Bayesian predictive failure time models. Stat Methods Med Res 27:2093-2113
Yi, Faliu; Yang, Lin; Wang, Shidan et al. (2018) Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinformatics 19:64
Song, Kai; Bi, Jia-Hao; Qiu, Zhe-Wei et al. (2018) A quantitative method for assessing smoke associated molecular damage in lung cancers. Transl Lung Cancer Res 7:439-449
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221

Showing the most recent 10 out of 1059 publications