Developing Personalized Medicine for Lung Cancer. The University of Texas SPORE in Lung Cancer represents a unique collaboration between the University of Texas Southwestern Medical Center (UTSW) and the University of Texas MD Anderson Cancer Center (MDACC) both of which have outstanding Strengths in lung cancer translational research. The overarching goal of the SPORE is to develop new experimental paradigms leading to personalized medicine approaches for lung cancer based on a molecular understanding of lung cancers in individual patients, and using this information to select the therapy (personalize) of each NSCLC patient's treatment. The SPORE builds on a 16 year productive history and incorporates recent advances made by SPORE investigators and others in lung cancer genomics, as well as important new advances in identifying and understanding lung cancer acquired vulnerabilities (synthetic lethalities). Together this will provide a more complete mechanistic understanding of the molecular findings so they can be applied to patients. These advances include novel approaches to functionally classify lung cancer by determining precisely the acquired vulnerabilities of each tumor, studying new molecular classifications of NSCLC related mRNA expression and DNA mutational clades and their functional characteristics, developing tools for CLIA certifiable molecular classification tests, preclinical model systems for testing the value of these new classification schemes, and a large legacy of molecular and clinical annotated datasets of lung cancers for retrospective analyses. The SPORE is composed of 4 projects: #1. Personalized medicine for NSCLC based on molecular portraits/clades; #2. Epidemiologic study of the role miR polymorphisms for predicting risk of lung cancer development and recurrence; #3. Therapeutic targeting of PI3K and MEK in mutant KRAS driven lung cancer for radiosensitization and blocking metastases; and #4. Therapeutic targeting of telomerase dependence on maintaining telomeres in lung cancer stem cells. In addition there are three cores: A. Administrative (including patient advocates), B. Molecular pathology, and C. Biostatistics-bioinformatics. The SPORE has some of the leading lung cancer translational investigators in the world in addition to a multidisciplinry group of clinical and laboratory scientists as well as a cadre of experienced patient advocates. The projects planned in this SPORE application will provide a new functional classification of lung cancer therapeutics, and the opportunity to change the face of NSCLC therapy.

Public Health Relevance

This SPORE in Lung Cancer assembles a multidisciplinary team of clinical and basic scientists from two leading lung cancer research institutions (UTSW and MDACC) to develop new ways to diagnose and treat lung cancer based on a rationale understanding of its molecular underpinnings and thus provide new 'personalized medicine' for lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA070907-18
Application #
9125744
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1)P)
Program Officer
Ujhazy, Peter
Project Start
1996-09-30
Project End
2019-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
18
Fiscal Year
2016
Total Cost
$2,162,000
Indirect Cost
$417,072
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Sinicropi-Yao, Sara L; Amann, Joseph M; Lopez, David Lopez Y et al. (2018) Co-Expression Analysis Reveals Mechanisms Underlying the Varied Roles of NOTCH1 in NSCLC. J Thorac Oncol :
Le, Xiuning; Puri, Sonam; Negrao, Marcelo V et al. (2018) Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clin Cancer Res 24:6195-6203
Wang, Shidan; Chen, Alyssa; Yang, Lin et al. (2018) Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci Rep 8:10393
Gomez, Daniel Richard; Byers, Lauren Averett; Nilsson, Monique et al. (2018) Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget 9:14268-14284
Parra, Edwin R; Villalobos, Pamela; Mino, Barbara et al. (2018) Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non-Small Cell Lung Carcinoma. Appl Immunohistochem Mol Morphol 26:83-93
Yamauchi, Mitsuo; Barker, Thomas H; Gibbons, Don L et al. (2018) The fibrotic tumor stroma. J Clin Invest 128:16-25
Ma, Junsheng; Hobbs, Brian P; Stingo, Francesco C (2018) Integrating genomic signatures for treatment selection with Bayesian predictive failure time models. Stat Methods Med Res 27:2093-2113
Yi, Faliu; Yang, Lin; Wang, Shidan et al. (2018) Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks. BMC Bioinformatics 19:64
Song, Kai; Bi, Jia-Hao; Qiu, Zhe-Wei et al. (2018) A quantitative method for assessing smoke associated molecular damage in lung cancers. Transl Lung Cancer Res 7:439-449
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221

Showing the most recent 10 out of 1059 publications