The individual research projects that make up this Ovarian Cancer SPORE application require the procurement, processing, and analysis of histopathological material from patients with ovarian cancer and benign ovarian diseases. The research projects have needs for frozen and formalin-fixed, paraffinembedded samples of tumor and normal tissue. The Pathology Core augments the already established M.D. Anderson Cancer Center Gynecological Tumor Bank and the P30-sponsored M.D. Anderson Cancer Center Centralized Tissue Repository with supporting database and intranet access. The Core provides tissue acquisition by experienced gynecological pathologists to assure high-quality tissues for the investigators participating in this SPORE as well as investigators of other SPOREs. The goal of the Pathology Core is to provide frozen tissue, paraffin-embedded tissue, and histopathological expertise related to the specific needs for the research projects comprising this SPORE proposal. To achieve this goal, the Pathology Core has the following Specific Aims.
Aim 1 is to maintain a frozen and paraffin-embedded tissue repository of ovarian cancer, benign ovarian processes, and normal ovary. The primary tissue source is operative and biopsy specimens submitted to the Department of Pathology at M.D. Anderson Cancer Center. In addition, a subcontract with Duke University provides additional ovarian tissues, particularly early stage ovarian cancers.
Aim 2 is to provide pathological review for all clinical specimens utilized in the SPORE projects and to provide histopathological technical services as necessary. Such technical services include immunohistochemistry, in situ hybridization, creation of specific tissue microarray slides, and microdissection of tissue sections.
Aim 3 is to establish a blood/urine/ascites fluid repository from patients undergoing surgery for ovarian cancer and benign ovarian processes. These fluids provide the resources for the systemic testing of putative prognostic and diagnostic markers derived from tissue-based expression array and CGH experiments.
Aim 4 is to create and maintain a SPORE Database for all samples collected at both M.D. Anderson Cancer Center and Duke University. This SPORE Database is a virtual tissue repository that is electronically shared by all SPORE investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA083639-10
Application #
7933955
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
10
Fiscal Year
2009
Total Cost
$207,660
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Yuan, Jiao; Hu, Zhongyi; Mahal, Brandon A et al. (2018) Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell 34:549-560.e9
Liu, Xiaojun; Jiang, Yingjun; Nowak, Billie et al. (2018) Targeting BRCA1/2 deficient ovarian cancer with CNDAC-based drug combinations. Cancer Chemother Pharmacol 81:255-267
Haemmerle, Monika; Stone, Rebecca L; Menter, David G et al. (2018) The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 33:965-983
Allen, Julie K; Armaiz-Pena, Guillermo N; Nagaraja, Archana S et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res 78:3233-3242
Umamaheswaran, Sujanitha; Dasari, Santosh K; Yang, Peiying et al. (2018) Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 37:203-211
Wang, Jue; Zhao, Wei; Guo, Huifang et al. (2018) AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 18:742
Huang, Yan; Hu, Wei; Huang, Jie et al. (2018) Inhibiting Nuclear Phospho-Progesterone Receptor Enhances Antitumor Activity of Onapristone in Uterine Cancer. Mol Cancer Ther 17:464-473
Yang, Hailing; Mao, Weiqun; Rodriguez-Aguayo, Cristian et al. (2018) Paclitaxel Sensitivity of Ovarian Cancer Can be Enhanced by Knocking Down Pairs of Kinases that Regulate MAP4 Phosphorylation and Microtubule Stability. Clin Cancer Res 24:5072-5084
Rhyasen, Garrett W; Yao, Yi; Zhang, Jingwen et al. (2018) BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLoS One 13:e0200826
Chen, Jian; Zaidi, Sobia; Rao, Shuyun et al. (2018) Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-? Pathway. Gastroenterology 154:195-210

Showing the most recent 10 out of 648 publications