There is an urgent need to improve our diagnostic capabilities and treatment of glioma tumors. This project combines novel genetic and imaging methods that specifically address these needs.
In Aim 1 we will explore whether endogenous neuroprecursor cells in adult animals will migrate to tumors in the brain and whether they can be genetically modified to deliver new therapeutic proteins, including secreted forms of the apoptosis-inducing protein, S-TRAIL, to kill tumor cells, as well as a decoy receptor for the vascular endothelial cell growth factor (VEGF) receptor to block angiogenesis.
Aim 2 will focus on development of biomolecular sensors to report from the tumor environment. The first sensor will be a metabolically biotinylated cell surface marker synthesized by cells under promoters that respond to angiogenic or hypoxic signals in the tumor. The second sensor will be a caged form of Gaussia luciferase quenched by flanking protein sequences, which can be selectively cleaved by metalloproteinases in the extracellular tumor matrix, thus restoring luciferase activity.
Aim 3 will identify peptides displayed on the AAV capsid, which can mediate passage of particles across the blood-tumor barrier. This will involve in vivo selection of a novel AAV peptide-display library designed to isolate infected cells of specific phenotypes from the tumors. Targeting vectors will be tested for improved delivery of biomolecular sensors and therapeutic proteins, and peptides will be evaluated for delivery of other macromolecules to tumors. These studies combine """"""""designer"""""""" recombinant proteins, genetically modified cells, and virus vectors with state-of-the-art methods of bioluminescence, fluorescence and MR imaging to monitor delivery and responses using human tumor cells implanted in the periphery and brains of nude mice. We hypothesize that these approaches will allow more efficient diagnosis and objective treatment evaluation of central nervous tumors, with broad applicability to other types of tumors. This work will be carried out in collaboration with Project 4 (fluorescent protein tomography) and Pilot Project 1 (neuroprecursor cell line), and will depend on the Mouse Imaging Core and Chemistry Core.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA086355-10
Application #
7910512
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
10
Fiscal Year
2009
Total Cost
$252,731
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Dubach, J Matthew; Kim, Eunha; Yang, Katherine et al. (2017) Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 13:168-173
Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian et al. (2017) Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 12:1472-1497
Iaconelli, Jonathan; Lalonde, Jasmin; Watmuff, Bradley et al. (2017) Lysine Deacetylation by HDAC6 Regulates the Kinase Activity of AKT in Human Neural Progenitor Cells. ACS Chem Biol 12:2139-2148
Arlauckas, Sean P; Garris, Christopher S; Kohler, Rainer H et al. (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9:
Miller, Miles A; Weissleder, Ralph (2017) Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 113:61-86
Engblom, Camilla; Pfirschke, Christina; Zilionis, Rapolas et al. (2017) Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358:
Miller, Miles A; Askevold, Bjorn; Mikula, Hannes et al. (2017) Nano-palladium is a cellular catalyst for in vivo chemistry. Nat Commun 8:15906
Pucci, Ferdinando; Garris, Christopher; Lai, Charles P et al. (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242-6
Roy, Jeremy; Kim, Bongki; Hill, Eric et al. (2016) Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun 7:10666
Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen et al. (2016) Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54

Showing the most recent 10 out of 316 publications