The UCLA Prostate Cancer SPORE is a multidisciplinary and translational research program focused on the development of new and innovative approaches for improving the diagnosis, prognosis, and treatment of prostate cancer patients. Initially built around a small nucleus of basic and clinical scientists, the program has expanded around campus to bring diverse talents from disciplines as varied as Chemistry, Nanotechnology, Stem Cell Biology, Pathology and Radiology to focus on the prostate cancer problem. This campus-wide (including UCLA affiliated-institutions) enterprise has led to significant discoveries with potential major impact on men with prostate cancer. The overall goal of this competitive renewal application is to continue to apply the diversity of talent on the UCLA campus and its sister institutions to the critical and evolving translational challenges in the fied of prostate cancer. To achieve the long-term objectives and goals of our program, the Specific Aims of the UCLA SPORE in Prostate Cancer are: 1. Perform high-impact translational research focused on some of the major challenges in the field of prostate cancer by: 2. Provide organizational infrastructure and novel technologies designed specifically to support the translational research objectives of the SPORE: 3. Develop new prostate cancer researchers and research areas to advance translational research in prostate cancer

Public Health Relevance

Prostate cancer is a major cause of morbidity and mortality in the US. The goal of our Prostate Cancer SPORE is to apply basic laboratory research to the goal of preventing, managing and curing all forms and stages of this disease. This will be accomplished through 4 major projects focused on critical unmet needs in this disease, pilot and developmental research programs, and core infrastructure support of research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Program Officer
Hruszkewycz, Andrew M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Miller, Eric T; Salmasi, Amirali; Reiter, Robert E (2018) Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 8:
Navarro, H├ęctor I; Goldstein, Andrew S (2018) HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci U S A 115:6528-6529
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47
Li, Jiayun; Speier, William; Ho, King Chung et al. (2018) An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput Med Imaging Graph 69:125-133
Kang, Jung J; Reiter, Robert E; Kummer, Nicolas et al. (2018) Wrong to be Right: Margin Laterality is an Independent Predictor of Biochemical Failure After Radical Prostatectomy. Am J Clin Oncol 41:1-5
Lee, Ha Neul; Mitra, Mithun; Bosompra, Oye et al. (2018) RECK isoforms have opposing effects on cell migration. Mol Biol Cell 29:1825-1838
Aggarwal, Rahul; Huang, Jiaoti; Alumkal, Joshi J et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 36:2492-2503
Cheng, Larry C; Li, Zhen; Graeber, Thomas G et al. (2018) Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer. J Vis Exp :
Park, Jung Wook; Lee, John K; Sheu, Katherine M et al. (2018) Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362:91-95
Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria et al. (2018) Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. J Urol 199:1218-1223

Showing the most recent 10 out of 339 publications