The role of the Organoid Core (Core E) is to generate a bank of state-of-the-art next-generation 3D in vitro organoid models of prostate cancer and provide them to the SPORE research projects for investigation. The study of castration-resistant prostate cancer (CRPC) has been limited by lack of in vitro models that represent the molecular and phenotypic diversity of the disease. We have developed optimized growth conditions for 3D prostate organoids from benign human and mouse prostate epithelial cells that can be engineered with defined genetic lesions using patient-derived CRPC biopsy specimens. The organoids maintain the histology and 3D architecture of the cancer tissue. We have generated 17 CRPC organoid lines over the past 2 years that harbor a number of genetic alterations not present in publicly available cell line models. Leveraging our program's commitment to collect, annotate, and sequence biopsy specimens from >2000 patients with CRPC, we plan to establish 20 clinically and molecularly annotated CRPC organoid lines annually. We will collaborate with each research project to engineer and study CRPC organoids that harbor specific genetic alterations or molecular phenotypes, including those with mutations in the DNA repair pathway (RP-1), mutations in the PI3K pathway (RP-2), mutations in TP35, silencing of RB1, and/or altered lineage specification (RP-3), and overexpression of different glucocorticoid receptor isoforms (RP-4). Working with the Animal Models Core (Core D), we will generate murine prostate organoids from genetically engineered mouse models harboring the specific genetic alterations of interest for the research projects. We will work with each project to develop protocols for in vitro drug treatment, in vivo xenograft studies, and genetic engineering of the organoid lines such as RNAi-mediated knockdown and CRISPR (clustered regularly interspaced palindromic repeats)-mediated somatic knockout. We will also conduct independent research aimed at improving services, including further optimization of organoid acquisition and growth protocols, identification of clinical and molecular determinants of successful organoid growth, and development of protocols to engineer genetic lesions into benign human prostate organoids.

Public Health Relevance

The study of castration-resistant prostate cancer (CRPC) has been limited by lack of tissue resources and in vitro models. The Organoid Core (Core E) will generate a bank of prostate cancer organoid lines from biopsy specimens of patients with CRPC and distribute them to each research project for study.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA092629-16
Application #
9148028
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2001-09-14
Project End
2021-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
16
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Hugosson, Jonas; Godtman, Rebecka Arnsrud; Carlsson, Sigrid V et al. (2018) Eighteen-year follow-up of the Göteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol 52:27-37
Kohestani, Kimia; Chilov, Marina; Carlsson, Sigrid V (2018) Prostate cancer screening-when to start and how to screen? Transl Androl Urol 7:34-45
Ankerst, Donna P; Straubinger, Johanna; Selig, Katharina et al. (2018) A Contemporary Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur Urol 74:197-203
Kim, Kwanghee; Watson, Philip A; Lebdai, Souhil et al. (2018) Androgen Deprivation Therapy Potentiates the Efficacy of Vascular Targeted Photodynamic Therapy of Prostate Cancer Xenografts. Clin Cancer Res 24:2408-2416
Assel, Melissa J; Gerdtsson, Axel; Thorek, Daniel L J et al. (2018) Long-term prediction of prostate cancer diagnosis and death using PSA and obesity related anthropometrics at early middle age: data from the malmö preventive project. Oncotarget 9:5778-5785
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Kinsella, Netty; Stattin, Pär; Cahill, Declan et al. (2018) Factors Influencing Men's Choice of and Adherence to Active Surveillance for Low-risk Prostate Cancer: A Mixed-method Systematic Review. Eur Urol 74:261-280
Li, Weiqiang; Middha, Mridu; Bicak, Mesude et al. (2018) Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival. Eur Urol 74:710-719
Aras, Omer; Pearce, Gillian; Watkins, Adam J et al. (2018) An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. PLoS One 13:e0202482
Sjoberg, Daniel D; Vickers, Andrew J; Assel, Melissa et al. (2018) Twenty-year Risk of Prostate Cancer Death by Midlife Prostate-specific Antigen and a Panel of Four Kallikrein Markers in a Large Population-based Cohort of Healthy Men. Eur Urol 73:941-948

Showing the most recent 10 out of 505 publications