The purpose of the Biostatistics Core is to provide design and analytic support to SPORE Projects, Developmental Projects, and other cores. This core has two specific aims.
Specific Aim 1 : To provide biostatistical consultation and collaboration for SPORE Projects, Developmental Projects, and Cores. The Biostatistics Core will work with SPORE researchers on protocol and experimental design and will provide estimates of sample size and statistical power. The Core will advise researchers about optimal methods for monitoring ongoing studies. The Core will provide statistical analyses of completed experiments, and participate in manuscript preparation. In addition to these formal collaborative efforts, the Biostatistics Core will be available for ongoing, informal consultation with researchers over the duration of the SPORE.
Specific Aim 2 : To provide or recommend supporting computational infrastructure. Because an effective informatics infrastructure is critical to the functioning of the SPORE, the Biostatistics Core will work to assure that the storage and accessibility of data used and generated by the SPORE is efficient and effective. The Biostatistics Core will support efficient management of data resources by consulting on database design, helping to design efficient data collection methods and conducting audits of data quality.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA093683-02
Application #
6666333
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-27
Project End
2003-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02115
de Masson, Adele; O'Malley, John T; Elco, Christopher P et al. (2018) High-throughput sequencing of the T cell receptor ? gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med 10:
Sung, Hyeran; Kanchi, Krishna L; Wang, Xue et al. (2016) Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 7:23885-96
Kirsch, Ilan R; Watanabe, Rei; O'Malley, John T et al. (2015) TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci Transl Med 7:308ra158
Lee, Jonathan J; Granter, Scott R; Laga, Alvaro C et al. (2015) 5-Hydroxymethylcytosine expression in metastatic melanoma versus nodal nevus in sentinel lymph node biopsies. Mod Pathol 28:218-29
Ma, Jie; Frank, Markus H (2015) Isolation of Circulating Melanoma Cells. Methods Mol Biol :
Jain, Salvia; Stroopinsky, Dina; Yin, Li et al. (2015) Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood 126:354-62
Watanabe, Rei; Gehad, Ahmed; Yang, Chao et al. (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7:279ra39
Lee, Jonathan J; Cook, Martin; Mihm, Martin C et al. (2015) Loss of the epigenetic mark, 5-Hydroxymethylcytosine, correlates with small cell/nevoid subpopulations and assists in microstaging of human melanoma. Oncotarget 6:37995-8004
Bhela, Siddheshvar; Kempsell, Christine; Manohar, Monali et al. (2015) Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol 194:2180-9
Lee, Jonathan J; Sholl, Lynette M; Lindeman, Neal I et al. (2015) Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naïve patient melanomas. Clin Epigenetics 7:59

Showing the most recent 10 out of 132 publications