Anomalous expression of glycosaminoglycans (GAG) such as chondroitin sulfate (CS) has been recognized in prostate cancer (PC) for decades. While CS is a potentially attractive tumor antigen in PC, utility of CS variants as therapeutic targets represent a technical challenge due to inherent low avidity of antibodies towards complex GAG structures. Embracing that challenge, we have developed a cross-disciplinary CS targeting strategy for PC based on engineered recombinant proteins from the malaria parasite Plasmodium falciparum. As a survival strategy to avoid host clearance, the malaria parasite has evolved a protein VAR2CSA that mediates high affinity binding to distinct CS in the placenta. PC express the same type of CS as placental trophoblasts thus recombinant malarial VAR2CSA (rVAR2) proteins can be re-purposed to target oncofetal CS (ofCS) modification in PC. Expression of ofCS in primary PC is not restricted to the tumor epithelium but is also present in the stromal cell compartment. Moreover, the rVAR2 protein can detect and isolate circulating tumor cells (CTCs) from complex blood samples. Finally, we have an rVAR2-Drug Conjugate (VDC886) able to engage ofCS-expressing PC cells in vitro and in vivo. Combined, our technology can access and target a tumor-selective GAG structure in PC for diagnostic and therapeutic applications. We hypothesize that our rVAR2-based ofCS-targeting system constitutes a novel therapeutic and diagnostic opportunity in human PC. Our hypothesis will be tested in the following Specific Aims:
Aim 1 : Preclinical evaluation of VDC886 as a novel treatment for metastatic CRPC (mCRPC).
Aim 2 : Visualization of metastatic PC lesions by ofCS PET imaging.
Aim 3 : Design and execute a phase I trial of VDC886 in mCRPC.

Public Health Relevance

The importance and relevance of this project centers on developing a new standard of care involving a targeted therapy for DNA repair deficient prostate cancer, to reduce the morbidity and mortality attributable to advanced prostate cancer and motivate studies designed to use individualized approaches to prioritize therapeutics likely to have substantial benefit in specific patient populations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097186-18
Application #
10016187
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-19
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Chalfin, Heather J; Glavaris, Stephanie A; Malihi, Paymaneh D et al. (2018) Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. J Urol 199:1494-1501
Inoue, Lurdes Y T; Lin, Daniel W; Newcomb, Lisa F et al. (2018) Comparative Analysis of Biopsy Upgrading in Four Prostate Cancer Active Surveillance Cohorts. Ann Intern Med 168:1-9
Cheng, Heather H; Plets, Melissa; Li, Hongli et al. (2018) Circulating microRNAs and treatment response in the Phase II SWOG S0925 study for patients with new metastatic hormone-sensitive prostate cancer. Prostate 78:121-127
Levesque, Christine; Nelson, Peter S (2018) Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance. Cold Spring Harb Perspect Med 8:
Barnard, Monique; Quanson, Jonathan L; Mostaghel, Elahe et al. (2018) 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. J Steroid Biochem Mol Biol 183:192-201
Ganaie, Arsheed A; Beigh, Firdous H; Astone, Matteo et al. (2018) BMI1 Drives Metastasis of Prostate Cancer in Caucasian and African-American Men and Is A Potential Therapeutic Target: Hypothesis Tested in Race-specific Models. Clin Cancer Res 24:6421-6432
Schweizer, Michael T; Haugk, Kathleen; McKiernan, Jožefa S et al. (2018) A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS One 13:e0198389
Peacock, James W; Takeuchi, Ario; Hayashi, Norihiro et al. (2018) SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Mol Med 10:219-238
Pollan, Sara G; Huang, Fangjin; Sperger, Jamie M et al. (2018) Regulation of inside-out ?1-integrin activation by CDCP1. Oncogene 37:2817-2836
Wu, Yi-Mi; Cie?lik, Marcin; Lonigro, Robert J et al. (2018) Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 173:1770-1782.e14

Showing the most recent 10 out of 400 publications