The University of Pittsburgh Head and Neck Cancer SPORE will continue to maintain and expand a Histology/Tissue Banking Core to ensure efficient use of head and neck tissue specimens and provide routine and specialized histologic evaluation of these tissues for the SPORE's research projects. The goal is to provide sufficient and well- characterized tissues of the highest quality in support of research studies in this SPORE and those of collaborating SPORE institutions. Tissue specimens as well as blood and body fluid samples are systematically collected from head and neck cancer patients or from non-cancer patients to be used as controls. The Core is responsible for collection, triage, processing and distribution or storage of specimens and tissue histopathology, tissue microarray generation, immunohistochemistry, and interpretation. Research specimens, including snap-frozen OCT-embedded, archival or fresh tissue blocks, cells (tumor or tumor infiltrating lymphocytes) dissociated from tissues, peripheral blood mononuclear cells, and paraffin-embedded or frozen tissue sections for immunohistochemical analysis and tissue microarrays, are triaged for distribution to the investigators, as specified by the research protocol. Microdissection of tissues and extraction of RNA and/or RNA for molecular assays may also be performed. The Core banks any samples that are not used immediately by the SPORE investigators for future use by SPORE developmental research projects and SPORE projects at collaborating institutions. Histopathologic analysis by the Core Pathologists confirms the quality of and the presence of the expected target tissue in research specimens. Immunohistochemistry is used to detect cellular biomarkers, whose expression in target tissues may be correlated with clinical outcome. The Core tracks samples and facilitates the sharing of specimens by the research laboratories according to a priority schema that is reviewed and approved by the Executive Committee of the SPORE. Specimen processing, inventory, and distribution data and histopathologic analyses are maintained in the Core's computerized database with links to the Informatics component of the Biostatistics Core for storage and archiving to facilitate a web-based retrieval system. This database is designed for use by all SPORE investigators.

Public Health Relevance

The Tissue and Histology Core is a required and essential component of the Head and Neck SPORE. The Core oversees the collection, processing and distribution of tissues obtained from head and neck (and when relevant, control) subjects for use by the projects of the SPORE. In addition, pilot studies supported by the DRP and candidates supported by the CDP have access to human specimens through the Core. This Core works closely with the Bioinformatics component of Core C to link each specimen to individual subjects in our organ-specific database.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097190-08
Application #
8380703
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
8
Fiscal Year
2012
Total Cost
$131,738
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Njatcha, Christian; Farooqui, Mariya; Kornberg, Adam et al. (2018) STAT3 Cyclic Decoy Demonstrates Robust Antitumor Effects in Non-Small Cell Lung Cancer. Mol Cancer Ther 17:1917-1926
Johnston, Paul A; Sen, Malabika; Hua, Yun et al. (2018) High Content Imaging Assays for IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Methods Mol Biol 1683:229-244
Palliyaguru, Dushani L; Yuan, Jian-Min; Kensler, Thomas W et al. (2018) Isothiocyanates: Translating the Power of Plants to People. Mol Nutr Food Res 62:e1700965
Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit et al. (2018) Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer 124:84-94
Santuray, Rodell T; Johnson, Daniel E; Grandis, Jennifer R (2018) New Therapies in Head and Neck Cancer. Trends Cancer 4:385-396
Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna et al. (2018) Novel Effector Phenotype of Tim-3+ Regulatory T Cells Leads to Enhanced Suppressive Function in Head and Neck Cancer Patients. Clin Cancer Res 24:4529-4538
Lu, Shanhong; Concha-Benavente, Fernando; Shayan, Gulidanna et al. (2018) STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer. Oral Oncol 78:186-193
Nikiforova, Marina N; Mercurio, Stephanie; Wald, Abigail I et al. (2018) Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124:1682-1690
Zhong, Qian; Liu, Zhi-Hua; Lin, Zhi-Rui et al. (2018) The RARS-MAD1L1 Fusion Gene Induces Cancer Stem Cell-like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clin Cancer Res 24:659-673
Ma, Jing; Salamoun, Joseph; Wipf, Peter et al. (2018) Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget 9:6042-6054

Showing the most recent 10 out of 310 publications