We have developed immunoliposomes for targeted drug delivery, and will apply this approach to brain tumors in conjunction with novel regional targeting as well as systemic administration. The modular organization of immunoliposome constructs makes possible a combinatorial strategy for the generation of new therapeutics: monoclonal antibody (MAb) fragments, derived from available MAbs or newly selected from phage antibody libraries, can be coupled to an appropriate liposomal drug, chosen from a repertoire of liposomal drugs. We hypothesize that immunoliposomes can be developed for targeted treatment of brain tumor cells, such as by targeting EGFR or other tumor-associated antigens. We will therefore construct immunoliposomes that bind and internalize in brain tumor cells, enabling intracellular delivery of potent anticancer agents, including those with high inherent activity against glioma cells. These immunoliposome constructs can be further developed in conjunction with novel delivery strategies for central nervous system (CNS) tumors, such as convection-enhanced delivery (CED), as well as intra-arterial (i.a) and intravenous (i.v.) administration. This represents an integrated approach in which molecular targeting is combined with regional targeting to maximize therapeutic index.
Our specific aims are: 1) Construct immunoliposomes targeted to EGFR-associated brain tumors, using our established methods. 2) Optimize immunoliposomes in conjunction with regional delivery methods in preclinical glioma models. Immunoliposomes, already optimized for systemic administration, can also be optimized in conjunction with CED to integrate regional and molecular targeting of brain tumors. 3) Evaluate anti-EGFR immunoliposomes for targeted defivery of anticancer agents, immunoliposomes will be used to deliver potent small molecule drugs, including doxorubicin which is already available in an FDA-approved liposomal version, as well as novel compounds (e.g, ellipticine, breflate) with unique mechanisms, potent activity against brain tumor cells, and pharmacologic limitations as free drugs necessitating targeted delivery. 4) Construct new brain tumor-targeted immunoliposomes. We have developed novel selection methods to isolate new internalizing scFv from phage antibody libraries, including scFv against both known and novel antigens, and will employ these to rapidly derive new immunoliposomes against brain tumor cells. 5) Perform advanced preclinical studies and clinical development of best construct. Immunoliposome agents that appear the most promising based on studies in Aims 1-4 will be moved to a development track for clinical testing, including process scale up, GMP manufacturing, IND-enabling preclinical studies, and Phase I clinical trial.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097257-05
Application #
7550494
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
5
Fiscal Year
2006
Total Cost
$188,006
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ostrom, Quinn T; Kinnersley, Ben; Wrensch, Margaret R et al. (2018) Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep 8:7352
Salas, Lucas A; Koestler, Devin C; Butler, Rondi A et al. (2018) An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol 19:64
Choi, Serah; Yu, Yao; Grimmer, Matthew R et al. (2018) Temozolomide-associated hypermutation in gliomas. Neuro Oncol 20:1300-1309
Jacobs, Daniel I; Liu, Yanhong; Gabrusiewicz, Konrad et al. (2018) Germline polymorphisms in myeloid-associated genes are not associated with survival in glioma patients. J Neurooncol 136:33-39
Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan et al. (2018) Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study. J Neurol 265:1432-1442
Goode, Benjamin; Joseph, Nancy M; Stevers, Meredith et al. (2018) Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod Pathol 31:660-673
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Pekmezci, Melike; Stevers, Meredith; Phillips, Joanna J et al. (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485-488
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:

Showing the most recent 10 out of 362 publications