The Brain Tumor SPORE Biospecimen/Pathology Core provides staff and technology dedicated to enhancing brain tumor biospecimen integrity and usability through use of optimized collection procedures; multi-modality preservation, processing, and analysis;histopathologic-molecular characterization;and computerized inventory and web-based request and tracking systems. All aspects of sample identification, processing and storage are performed with strict compliance to the College of American Pathologists (CAP) guidelines. In order to maximize sharing and integration of SPORE projects, the Tissue Core collects and makes available data derived from all distributed brain tumor biospecimens.
Specific Aims of the SPORE Biospecimen/Pathology Core: A. To acquire brain tumor patient biospecimens from the operating room and SPORE Animal Core with optimized handling to maximize cell viability and/or minimize the warm-ischemic interval so as to meet the tissue accrual requirements for the Brain Tumor SPORE projects and clinical trials.
This aim i s essential for all Projects. B. To perform quality control assays on archived brain tumor biospecimens collected from the operating room and SPORE Animal Core, to ensure availability of adequate numbers of consistently handled specimens that will yield high quality data for SPORE projects and clinical trials. C. To provide routine and advanced tissue handling/processing and analytical techniques, including immunohistochemistry, fluorescence in situ hybridization (FISH), tissue microarray construction, DNA/RNA extraction, protein isolation, and preparation of viable cells thatwill advance project hypothesis development and goal attainment. D. To maintain a database containing demographic data, results from molecular analyses, and brain tumor patient biospecimen distributions (internal and external) that will be linked to relational clinical databases maintained by the Biostatistics and Clinical Core.

Public Health Relevance

The Brain Tumor SPORE Biospecimen/Pathology Core is dedicated to the optimization of human and animal brain tumor biospecimen collection, storage, use, distribution, and sharing of data from studies using this precious resource. The Core is essential for the high impact translational goals of each Brain Tumor SPORE Projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097257-12
Application #
8760342
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$176,570
Indirect Cost
$64,495
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan et al. (2018) Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study. J Neurol 265:1432-1442
Goode, Benjamin; Joseph, Nancy M; Stevers, Meredith et al. (2018) Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod Pathol 31:660-673
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Pekmezci, Melike; Stevers, Meredith; Phillips, Joanna J et al. (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485-488
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:
Taylor, Jennie W; Parikh, Mili; Phillips, Joanna J et al. (2018) Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol 140:477-483
Luks, Tracy L; McKnight, Tracy Richmond; Jalbert, Llewellyn E et al. (2018) Relationship of In Vivo MR Parameters to Histopathological and Molecular Characteristics of Newly Diagnosed, Nonenhancing Lower-Grade Gliomas. Transl Oncol 11:941-949
Viswanath, Pavithra; Radoul, Marina; Izquierdo-Garcia, Jose Luis et al. (2018) 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res 78:2290-2304
An, Zhenyi; Knobbe-Thomsen, Christiane B; Wan, Xiaohua et al. (2018) EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma. Cancer Res 78:6785-6794

Showing the most recent 10 out of 362 publications