Treatment advances for non-Hodgkin Lymphoma (NHL) and Hodgkin Disease (HD) over the last several decades have improved the survival of patients with these common malignancies. However, nearly 40% of patients with large cell NHL, 80% with indolent NHL, and 20% with HD are not cured and die of their disease. It is clear that new agents with unique mechanisms of action based on knowledge of signal transduction pathways in lymphoma cells are needed to advance lymphoma treatment. This proposal focuses on the phosphatidylinositol-3 kinase (PI3K) and Raf kinase pathways in lymphoma cells. We have demonstrated single agent activity in patients with NHL/HD using inhibitors of the PI3K pathway (temsirolimus/everolimus) and inhibitors of farnesyl transferase (tipifarnib). Preliminary in vitro studies demonstrate activity of the Raf kinase/VGFR inhibitor sorafenib against lymphoma cells that is synergistic with the PI3K pathway inhibitors. The overall hypothesis of this proposal is that a combination of chemotherapy agents with one or more of the signal transduction inhibitors (STIs) will improve the response rate and survival of patients with NHL/HD. To test this hypothesis, this project includes clinical trials that assess rational combinations of STIs with each other and with conventional chemotherapy agents, investigational biomarkers in lymphoma cells from patients participating in these trials, and in vitro studies of new agents and combinations in primary tumor cells that will lead to the next generation of clinical trials. This work is organized in 3 specific aims.
Aim 1, to investigate the safety and efficacy of PI3K/Akt/mTOR pathway inhibitors in combination with Raf- kinase inhibitors and conventional chemotherapy agents Aim 2, to assess the action of combinations of STIs on the targeted pathways and identify potential markers of anti-tumor efficacy using malignant B-cells from patients entered on the trials in Aim 1 Aim 3, to investigate novel combinations containing agents targeting the PI3K/Akt/mTOR pathway and other STIs or conventional agents in malignant B-cells in vitro to provide the rationale for the next generation of clinical trials. Our initial studies will focus on drugs that target PI3K/Akt/mTOR pathway components or those of pathways known to connect with the PI3K/Akt/mTOR pathway. Combinations with substantial clinical activity will then move to large-scale testing in the cooperative groups such as NCCTG or ECOG. Lay Language Statement: Lymphoma cells respond to signals that are transmitted from the outside to the inside of the cell resulting in cell growth. This project focuses on new drugs for patients with lymphoma that interfere with those signals. Preliminary studies with several of these drugs are promising and the goal of this project will be to combine these agents together and with other common chemotherapy agents to advance the treatment of lymphoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097274-10
Application #
8302444
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
10
Fiscal Year
2011
Total Cost
$281,849
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Sharma, Ayush; Oishi, Naoki; Boddicker, Rebecca L et al. (2018) Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood 131:2262-2266
Fama, Angelo; Xiang, Jinhua; Link, Brian K et al. (2018) Human Pegivirus infection and lymphoma risk and prognosis: a North American study. Br J Haematol 182:644-653
Jalali, Shahrzad; Price-Troska, Tammy; Paludo, Jonas et al. (2018) Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv 2:1985-1997
Bachy, Emmanuel; Maurer, Matthew J; Habermann, Thomas M et al. (2018) A simplified scoring system in de novo follicular lymphoma treated initially with immunochemotherapy. Blood 132:49-58
Franqui-Machin, Reinaldo; Hao, Mu; Bai, Hua et al. (2018) Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. J Clin Invest 128:2877-2893
Ghahramani, Grant K; Goetz, Kirsten E; Liu, Vincent (2018) Dermoscopic characterization of cutaneous lymphomas: a pilot survey. Int J Dermatol 57:339-343
Hu, G; Dasari, S; Asmann, Y W et al. (2018) Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma. Leukemia 32:565-569
Moss, Jennifer L; Xiao, Qian; Matthews, Charles E (2018) Patterns of cancer-related health behaviors among middle-aged and older adults: Individual- and area-level socioeconomic disparities. Prev Med 115:31-38
Luchtel, Rebecca A; Dasari, Surendra; Oishi, Naoki et al. (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386-1398
Oishi, Naoki; Brody, Garry S; Ketterling, Rhett P et al. (2018) Genetic subtyping of breast implant-associated anaplastic large cell lymphoma. Blood 132:544-547

Showing the most recent 10 out of 387 publications