The tumor microenvironment plays an important role in non-Hodgkin lymphoma (NHL) and the role intratumoral immune cells play in the pathology of lymphoma has been significantly understated. Intratumoral monocytes and macrophages are particularly important and our data demonstrate that intratumoral monocytes in NHL are highly immunosuppressive and support malignant cell growth. In preliminary work, we found that suppressive monocytic cells (SMCs) are abundant within the peripheral blood and tumor microenvironment in lymphoma patients and promote the survival of lymphoma cells. SMCs protect lymphoma cells from chemotherapy-induced cell death and promote lymphoma cell engraftment into severe combined immunodeficient (SCID) mice. Furthermore, we found that SMCs within lymph nodes express immunosuppressive ligands including B7-H1 (PD-L1, CD273), inhibit normal T-cell proliferation and promote the induction of FoxP3+ regulatory T cells. These preliminary studies suggest that SMCs have an effect on both malignant NHL cells and non-malignant intratumoral T-cells. Based on our results, we hypothesize that the intersection between the immune system and the malignant cell in NHL is the SMCs. In this proposal, we plan to understand whether monocytes are specifically recruited to sites of lymphoma and which specific chemokines could be inhibited to prevent SMC migration; how lymphoma cells induce SMCs to support their malignant cell growth and to suppress the host's antitumor immunity;and whether promoting monocyte/macrophage maturation or inhibiting their interaction with other cells, particularly in the presence of monoclonal antibodies, improves their anti-tumor function. Upon completion of this project, we expect to have a greater understanding of the role of monocytes and their progeny in NHL. Collectively our findings are likely to have a major impact by leading to an effective monocyte-directed therapeutic approach for patients with lymphoma.

Public Health Relevance

The monocyte-macrophage system is critical in the host's response to pathogens and inflammation. In lymphoma patients, however, there is a significant population of immunosuppressive monocytic cells present in peripheral blood and lymph nodes that promotes the survival of malignant cells. The proposed studies will provide a comprehensive understanding of the role of suppressive monocytes in lymphoma, allowing us to intervene and modulate monocyte function on multiple levels leading to novel therapeutic approaches for lymphoma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097274-12
Application #
8561351
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
12
Fiscal Year
2013
Total Cost
$263,720
Indirect Cost
$23,439
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Thanarajasingam, Gita; Maurer, Matthew J; Farooq, Umar et al. (2018) Event-free survival at 24 months captures central nervous system relapse of systemic diffuse large B-cell lymphoma in the immunochemotherapy era. Br J Haematol 183:149-152
Kleinstern, Geffen; Maurer, Matthew J; Liebow, Mark et al. (2018) History of autoimmune conditions and lymphoma prognosis. Blood Cancer J 8:73
Saad Aldin, Ehab; McNeely, Parren; Menda, Yusuf (2018) Posterior Reversible Encephalopathy Syndrome on 18F-FDG PET/CT in a Pediatric Patient With Burkitt's Lymphoma. Clin Nucl Med 43:195-198
Link, Brian K; Day, Bann-Mo; Zhou, Xiaolei et al. (2018) Second-line and subsequent therapy and outcomes for follicular lymphoma in the United States: data from the observational National LymphoCare Study. Br J Haematol :
Ebeid, Kareem; Meng, Xiangbing; Thiel, Kristina W et al. (2018) Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol 13:72-81
Holahan, Heather M; Farah, Ronda S; Fitz, Sara et al. (2018) Health-related quality of life in patients with cutaneous T-cell lymphoma? Int J Dermatol 57:1314-1319
Maurer, Matthew J; Ghesquières, Hervé; Link, Brian K et al. (2018) Diagnosis-to-Treatment Interval Is an Important Clinical Factor in Newly Diagnosed Diffuse Large B-Cell Lymphoma and Has Implication for Bias in Clinical Trials. J Clin Oncol 36:1603-1610
Huet, Sarah; Tesson, Bruno; Jais, Jean-Philippe et al. (2018) A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. Lancet Oncol 19:549-561
El-Galaly, Tarec Christoffer; Cheah, Chan Yoon; Bendtsen, Mette Dahl et al. (2018) Treatment strategies, outcomes and prognostic factors in 291 patients with secondary CNS involvement by diffuse large B-cell lymphoma. Eur J Cancer 93:57-68
Tracy, Sean I; Habermann, Thomas M; Feldman, Andrew L et al. (2018) Outcomes among North American patients with diffuse large B-cell lymphoma are independent of tumor Epstein-Barr virus positivity or immunosuppression. Haematologica 103:297-303

Showing the most recent 10 out of 387 publications